Advertisement

Immune evasion mechanisms of varicella-zoster virus

  • A. Abendroth
  • A. Arvin
Conference paper

Summary

Varicella-zoster virus can to modulate the expression of class I and class II major histocompatibility (MHC) molecules. MHC class I expression is downregulated in VZV-infected T cells as well as in fibroblasts. VZV-infected cells do not respond to exposure to interferon-γ (IFN-γ) by upregulation of MHC class II expression. However, MHC class II expression is induced when cells are treated with IFN-y before VZV infection. These effects on MHC class I and class II expression can be expected to interfere transiently with adaptive immune responses of the host, mediated by CD4 and CD8 T cells, ensuring that the virus has sufficient opportunity for transmission to susceptible contracts.

Keywords

Major Histocompatibility Complex Class Varicella Zoster Virus Transporter Associate With Antigen Process Varicella Zoster Virus Infection Immune Evasion Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abendroth A, Slobedman B, Lee E, Wallace M, Mellins E, Arvin A (2000) Modulation of major histocompatibility complex class II expression by varicella zoster virus. J Virol 74: 1900–1907PubMedCrossRefGoogle Scholar
  2. 2.
    Ahn K, Angulo A, Ghazal P, Peterson PA, Yang Y, Fruh K (1996) Human cytomegalovirus inhibits antigen presentation by a sequential multistep process. Proc Natl Acad Sci USA 93: 10990–10995PubMedCrossRefGoogle Scholar
  3. 3.
    Ahn K, Gruhler A, Galocha B, Jones TR, Wiertz EJ, Ploegh HL, Peterson PA, Yang Y, Fruh K (1997) The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity 6: 613–621PubMedCrossRefGoogle Scholar
  4. 4.
    Ahn K, Meyer TH, Uebel S, Sempe P, Djaballah H., Yang Y, Peterson PA, Fruh K, Tampe R (1996) Molecular mechanism and species specificity of TAP inhibition by herpes simplex virus ICP47. EMBO J 15: 3247–3255PubMedGoogle Scholar
  5. 5.
    Arvin A (1995) Varicella-zoster virus. In: Fields B, Knipe D, Howley P (eds) Fields Virology. Raven, New York, pp 2547–2586Google Scholar
  6. 6.
    Arvin AM (1996) Immune responses to varicella-zoster virus. Infect Dis Clin North Am 10: 529PubMedCrossRefGoogle Scholar
  7. 7.
    Boss JM (1997) Regulation of transcription of MHC class II genes. Curr Opin Immunol 9: 107–113PubMedCrossRefGoogle Scholar
  8. 8.
    Buchmeier MA, Cooper NR (1989) Suppression of monocyte functions by human cytomegalovirus. Immunology 66: 278–283PubMedGoogle Scholar
  9. 9.
    Cohen J, Straus S (1995) Varicella zoster virus and its replication. In: Fields B, Knipe D, Howley P (eds) Fields Virology. Raven, New York, pp 2525–2546Google Scholar
  10. 10.
    Cohen JI (1998) Infection of cells with varicella-zoster virus down-regulates surface expression of class I major histocompatibility complex antigens. J Infect Dis 177: 1390–1393PubMedCrossRefGoogle Scholar
  11. 11.
    Fruh K, Ahn K, Djaballah H, Sempe P, van Endert PM, Tampe R, Peterson PA, Yang Y (1995) A viral inhibitor of peptide transporters for antigen presentation. Nature 375: 415–418PubMedCrossRefGoogle Scholar
  12. 12.
    Fruh K, Gruhler A, Krishna R, Schoenhals G (1999) A comparison of viral immune escape strategies targeting the MHC class I assembly pathway. Immunol Rev 168: 157–166PubMedCrossRefGoogle Scholar
  13. 13.
    Galocha B, Hill A, Bartlett B, Dolan A, Raimondi A, Cook R, Brunner J, McGeoch D, Ploegh H (1997) The active site of ICP47, a herpes simplex virus-encoded inhibitor of major histocompatibility complex (MHC)-encoded peptide transport associated with antigen processing (TAP), maps to the NH2-terminal 35 residues. J Exp Med 185: 1565–1572PubMedCrossRefGoogle Scholar
  14. 14.
    Hayward A, Giller R, Levin M (1989) Phenotype, cytotoxic, and helper functions of T cells from varicella zoster virus stimulated cultures of human lymphocytes. Viral Immunol 2: 175–184PubMedCrossRefGoogle Scholar
  15. 15.
    Hayward AR, Pontesilli O, Herberger M, Laszlo M, Levin M (1986) Specific lysis of varicella zoster virus-infected B lymphoblasts by human T cells. J Virol 58: 179–184PubMedGoogle Scholar
  16. 16.
    Heise MT, Connick M, Virgin HW (1998) Murine cytomegalovirus inhibits interferon gamma-induced antigen presentation of CD4 T cells by macrophages via regulation of expression of major histocompatibility comlex class II-associated genes. J Exp Med 187: 1037–1046PubMedCrossRefGoogle Scholar
  17. 17.
    Heise MT, Pollock JL, O’Guin A, Barkon ML, Bormley S, Virgin HW (1998) Murine cytomegalovirus infection inhibits IFN gamma-induced MHC class II expression on macrophages: the role of type I interferon. Virology 241: 331–344PubMedCrossRefGoogle Scholar
  18. 18.
    Hengel H, Flohr T, Hammerling GJ, Koszinowski UH, Momburg F (1996) Human cytomegalovirus inhibits peptide translocation into the endoplasmic reticulum for MHC class I assembly. J Gen Virol 77: 2287–2296PubMedCrossRefGoogle Scholar
  19. 19.
    Hengel H, Koopmann JO, Flohr T, Muranyi W, Goulmy E, Hammerling GJ, Koszinowski UH, Momburg F (1997) A viral ER-resident glycoprotein inactivates the MHC-encoded peptide transporter. Immunity 6: 623–632PubMedCrossRefGoogle Scholar
  20. 20.
    Hengel H, Koszinowski U (1997) Interference with antigen processing by viruses. Curr Opin Immunol 9: 470–476PubMedCrossRefGoogle Scholar
  21. 21.
    Hill A, Jugovic P, York I, Russ G, Bennink J, Yewdell J, Ploegh H, Johnson D (1995) Herpes simplex virus turns off the TAP to evade host immunity. Nature 374: 411–415CrossRefGoogle Scholar
  22. 22.
    Huang Z, Vafai A, Lee J, Mahalingam R, Hayward AR (1992) Specific lysis of targets expressing varicella-zoster virus gpl or gpIV by CD4+ human T-cell clones. J Virol 66: 2664–2669PubMedGoogle Scholar
  23. 23.
    Jones T, Hanson L, Sun L, Slater J, Stenberg R, Campbell A (1995) Multiple independent loci within the human cytomegalovirus unique short region down-regulate expression of major histocompatibility complex class I heavy chains. J Virol 69: 4830–4841PubMedGoogle Scholar
  24. 24.
    Jones T, Sun L (1997) Human cytomegalovirus US2 destabilizes major histocompatibility complex class I heavy chains. J Virol 71: 2970–2979PubMedGoogle Scholar
  25. 25.
    Jones TR, Wiertz EJ, Sun L, Fish KN, Nelson JA, Ploegh HL (1996) Human cytomegalovirus US3 impairs transport and maturation of major histocompatibility complex class I heavy chains. proc Natl Acad Sci USA 93: 11327–11333PubMedCrossRefGoogle Scholar
  26. 26.
    Kleijnen M, Huppa J, Lucin P, Mukherjee S, Farrell H, Campbell A, Koszinowski U (1997) A mouse cytomegalovirus glycoprotein, gp34, forms a complex with folded class I MHC molecules in the ER which is not retained but is transported to the cell surface. EMBO J 16: 685–694PubMedCrossRefGoogle Scholar
  27. 27.
    Leonard GT, GC Sen (1997) Restoration of interferon responses of adenovirus E1A-expressing HT1080 cell lines by overexpression of p48 protein. J Virol 71: 5095–5101PubMedGoogle Scholar
  28. 28.
    Leopardi R, Ilonen J, Mattila L, Salmi AA (1993) Effect of measles virus infection on MHC class II expression and antigen presentation in human monocytes. Cell Immunol 147: 388–396PubMedCrossRefGoogle Scholar
  29. 29.
    Miller DM, Rahill BM, Boss JM, Lairmore MD, Durbin JE, Waldman JW, Sedmak DD (1998) Human cytomegalovirus inhibits major histocompatibility complex class II expression by disruption of the Jak/Stat pathway. J Exp Med 187: 675–683PubMedCrossRefGoogle Scholar
  30. 30.
    Machold R, Wiertz E, Jones T, Ploegh H (1997) The HCMV gene products US11 and US2 differ in their ability to attack allelic forms of murine major histocompatibility complex (MHC) class I heavy chains. J Exp Med 185: 363–366PubMedCrossRefGoogle Scholar
  31. 31.
    Moffat JF, Stein MD, Kaneshima H, Arvin AM (1995) Tropism of varicella-zoster virus for human CD4+ and CD8+ T lymphocytes and epidermal cells in SCID-hu mice. J Virol 69: 5236–5242PubMedGoogle Scholar
  32. 32.
    Neefjes JJ, Momburg F (1993) Cell biology of antigen presentation. Curr Opin Immunol 5: 27–34PubMedCrossRefGoogle Scholar
  33. 33.
    Petit AJ, Terpstra FG, Miedema F (1987) Human immunodeficiency virus infection down-regulates HLA class II expression and expression and induces differentiation in promonocytic U937 cells. J Clin Invest 79: 1883–1889PubMedCrossRefGoogle Scholar
  34. 34.
    Ploegh HL (1998) Viral strategies of immune evasion. Science 280: 248–253PubMedCrossRefGoogle Scholar
  35. 35.
    Reusch U, Muranyi W, Lucin P, Burgert H, Hengel H, Koszinowski U (1999) A cytomegalovirus glycoprotein re-routes MHC class I complexes to lysosomes for degradation. EMBO 18: 1081–1091CrossRefGoogle Scholar
  36. 36.
    Scholz M, Hamann A, Blaheta RA, Auth MK, Encke A, Markus BH (1992) Cytomegalovirus-and interferon-related effects on human endothelial cells. Cytomegalovirus infection reduces upregulation of HLA class II antigen expression after treatment with interferon-γ. Hum Immunol 35: 230–238PubMedCrossRefGoogle Scholar
  37. 37.
    Sedmak DD, Guglielmo AM, Knight DA, Birmingham DJ, Huang EH, Waldman WJ (1994) Cytomegalovirus inhibits major histocompatibility class II expression on infected endothelial cells [see comments]. Am J Pathol 144: 683–692PubMedGoogle Scholar
  38. 38.
    Sharp M, Terada K, Wilson A, Nader S, Kinchington PE, Ruyechan WT, Hay J, Arvin AM (1992) Kinetics and viral protein specificity of the cytotoxic T lymphocyte response in healthy adults immunized with live attenuated varicella vaccine. J Infect Dis 165: 852–858PubMedCrossRefGoogle Scholar
  39. 39.
    Tomazin R, Hill AB, Jugovic P, York I, van Endert P, Ploegh HL, Andrews DW, Johnson DC (1996) Stable binding of the herpes simplex virus ICP47 protein to the peptide binding site of TAP. EMBO J 15: 3256–3266PubMedGoogle Scholar
  40. 40.
    Wiertz El, Jones TR, Sun L, Bogyo M, Geuze HJ, Ploegh HL (1996) The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84: 769–779CrossRefGoogle Scholar
  41. 41.
    York IA, Roop C, Andrews DW, Riddell SR, Graham FL, Johnson DC (1994) A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8+ T lymphocytes. Cell 77: 525–535PubMedCrossRefGoogle Scholar
  42. 42.
    Zhang Y, Cosyns M, Levin MJ, Hayward AR (1994) Cytokine production in varicella zoster virus-stimulated limiting dilution lymphocyte cultures. Clin Exp Immunol 98: 128–133PubMedCrossRefGoogle Scholar
  43. 43.
    Ziegler H, Thale R, Lucin P, Muranyi W, Flohr T, Hengel H, Farrell H, Rawlinson W, Koszinowski UH (1997) A mouse cytomegalovirus glycoprotein retains MHC class I complexes in the ERGIC/cis-Golgi compartments. Immunity 6: 57–66PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • A. Abendroth
    • 1
    • 2
  • A. Arvin
    • 1
    • 3
  1. 1.Stanford University School of MedicineStanfordUSA
  2. 2.Centre for Virus Research, Westmead Millennium, Institute of Health ResearchUniversity of SydneyWestmeadAustralia
  3. 3.Stanford University School of MedicineStanfordUSA

Personalised recommendations