Advertisement

The Role of Incomplete Interstitial-Vacancy Recombination on Silicon Amorphization

  • Luis A. Marqués
  • Lourdes Pelaz
  • Jesús Hernández
  • Juan Barbolla
Conference paper

Abstract

We investigate the role that point defects and interstitial-vacancy pairs have on the Si amorphization process using molecular dynamics techniques. We show that accumulation of interstitial-vacancy pairs in concentrations of 25% and above lead to homogeneous amorphization. We identify very stable defect structures, consisting of the combination of the pair and Si self-interstitials, which form when there is an excess of interstitials or by incomplete interstitial-vacancy recombination in a highly damaged lattice. These defects could survive long enough at room temperature to act as embryos for the formation of extended amorphous zones and/or point defect clusters.

Keywords

Concentration ofIV Intrinsic Point Defect Amorphous Zone Molecular Dynamic Technique Amorphization Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Maszara, W.P., Rozgonyi, G.A. (1986): Kinetics of damage production in silicon during self-implantation. J. Appl. Phys. 60: 2310–2315CrossRefGoogle Scholar
  2. [2]
    Holland, O.W., White, C.W. (1991): Ion-induced damage and amorphization in silicon. Nucl. Instrum. Methods Phys. Res. B 59/60: 353–362CrossRefGoogle Scholar
  3. [3]
    Seidman, D.N., Averback, R.S., Okamoto, P.R., Baily, A.C. (1987): Amorphization processes in electron-and/or ion-irradiated silicon. Phys. Rev. Lett. 58: 900–903CrossRefGoogle Scholar
  4. [4]
    Takeda, S., Yamasaki, J. (1999): Amorphization in silicon by electron irradiation. Phys. Rev. Lett. 83: 320–323CrossRefGoogle Scholar
  5. [5]
    Tang, M., Colombo, L., Zhu, J., Diaz de la Rubia, T. (1997): Intrinsic point defects in crystalline Si: Tight-binding molecular dynamics studies of self-diffusion, interstitial-vacancy recombination, and formation volumes. Phys. Rev. B 55: 14279–14289Google Scholar
  6. [6]
    Jara¨ªz, M., Pelaz, L., Rubio, E., Barbolla, J., Gilmer, G.H., Eaglesham, D.J., Gossmann, H.J., Poate, J.M. (1998): Atomistic modeling of point and extended defects in crystalline materials. MRS Symp. Proc. 532, MRS Spring Meeting, San Francisco, pp. 43–53Google Scholar
  7. [7]
    Tersoff, J. (1988): Empirical interatomic potential for silicon with improved elastic properties. Phys. Rev B 38: 9902–9905CrossRefGoogle Scholar
  8. [8]
    Cargnoni, F., Gatti, C., Colombo, L. (1998): Formation and annihilation of a bond defect in silicon: An ab initio quantum-mechanical characterization. Phys. Rev. B 57: 170–177CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Luis A. Marqués
    • 1
  • Lourdes Pelaz
    • 1
  • Jesús Hernández
    • 1
  • Juan Barbolla
    • 1
  1. 1.Departamento de ElectrónicaUniversidad de Valladolid E.T.S.I. TelecomunicaciónCampus Miguel DelibesSPAIN

Personalised recommendations