Modeling Semiconductor Carbon Nanotube Rectifying Heterojunctions

  • Gary Pennington
  • Neil Goldsman
Conference paper


We present a method of modeling the effective mass, band offset and current in a heterostructure electronic device constructed from two carbon nanotubes of different diameters.


Carbon Nanotubes Effective Mass Forward Bias Connected Tube Thermionic Emission Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Dekker C. (1999): Carbon nanotubes as molecular quantum wires. Phys. Today 52: 22–28Google Scholar
  2. [2]
    Martel R. et al. (1998): Single-and multi-walled carbon nanotube field-effect transistors. Appl. Phy. Lett. 73: 2447–2449CrossRefGoogle Scholar
  3. [3]
    Milnes A. G. and Feucht K. L. (1972): Heterojunctions and metal-semiconducto junctions. Acad. Press, N.Y.Google Scholar
  4. [4]
    Papadopoulos C. et al. (2000): Electronic transport in y-junction carbon nanotubes. Phy. Rev. Lett. 85: 3476–3479CrossRefGoogle Scholar
  5. [5]
    Saito R. et al. (1998): Physical properties of carbon nanotubes. Imperial College Press, LondonCrossRefGoogle Scholar
  6. [6]
    Saito R., Dresselhaus G., and Dresselhaus M. S. (2000): Trigonal warping effect in carbon nanotubes. Phy. Rev. B 61: 2981–2990CrossRefGoogle Scholar
  7. [7]
    Wang R., Ke S., and Huang M. (1992): Average bonding-antibonding energy at semiconductor heterojunctions and its applications to calculating the valence band offset. J. Phys. Condens. Matter 4: 8083–8090CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Gary Pennington
    • 1
  • Neil Goldsman
    • 1
  1. 1.Department of Electrical EngineeringUniversity of Maryland College Park

Personalised recommendations