Advertisement

Impact of Substrate Resistance on Drain Current Noise in MOSFETs

  • Jung-Suk Goo
  • Simona Donati
  • Chang-Hoon Choi
  • Zhiping Yu
  • Thomas H. Lee
  • Robert W. Dutton

Abstract

This paper identifies the physical origin and contribution mechanism of substrate induced channel thermal noise in MOSFETs. Resistance of the substrate generates potential fluctuations that in turn produce additive channel noise via the channel depletion capacitor. The additive noise may result in a frequency dependence of the drain current noise due to a pole associated with the Rsub-Cdepi network. Its bias and length dependencies conforms to those of reported excess noise, it thus may exaggerate the amount of the channel thermal noise factor.

Keywords

Gate Oxide Noise Simulation Substrate Network Drain Bias MOSFET Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [I]
    R. P. Jindal, “Hot-Electron Effects on Channel Thermal Noise in Fine-Line NMOS Field-Effect Transistor,” IEEE Transactions on Electron Devices, vol. 33, no. 9, pp. 1395–1397, Sept. 1986.CrossRefGoogle Scholar
  2. [2]
    A. J. Scholten, H. J. Tromp, L. F. Tiemeijer, R. van Langevelde, R. J. Havens, P. W. H. de Vreede, R. F. M. Roes, P. H. Woerlee, A. H. Montree, and D. B. M. Klaassen, “Accurate Thermal Noise Model for Deep-Submicron CMOS,” in Technical Digest of IEDM (International Electron Devices Meeting), Washington, DC, Dec. 1999, pp. 155–158.Google Scholar
  3. [3]
    S. V. Kishore, G. Chang, G. Asmanis, C. Hull, and F. Stubbe, “Substrate-Induced High-Frequency Noise in Deep Sub-Micron MOSFETs for RF Applications,” in Proceedings of IEEE CICC (Custom Integrated Circuits Conference), San Diego, CA, May 1999, pp. 365–368.Google Scholar
  4. [4]
    J. J. Ou, X. Jin, C. Hu, and P. R. Gray, “Submicron CMOS thermal noise modeling from an RF perspective,” in Proceedings of the Symposium on VLSI Technology, Kyoto, Japan, June 1999, pp. 151–152.Google Scholar
  5. [5]
    S. Donati, M. A. Alam, K. S. Krisch, S. Martin, M. R. Pinto, H. H. Vuong, F. Bonani, and G. Ghione, “Physics-Based RF Noise Modeling of Submicron MOSFETs,” in Technical Digest of IEDM (International Electron Devices Meeting), San Francisco, CA, Dec. 1998, pp. 81–84.Google Scholar
  6. [6]
    J.-S. Goo, C.-H. Choi, F. Danneville, E. Morifuji, H. S. Momose, Z. Yu, H. Iwai, T. H. Lee, and R. W. Dutton, “An Accurate and Efficient High Frequency Noise Simulation Technique for Deep Submicron MOSFETs,” IEEE Transactions on Electron Devices, vol. 47, no. 12, pp. 2410–2419, Dec. 2000.CrossRefGoogle Scholar
  7. [7]
    R. P. Jindal, “Distributed Substrate Resistance Noise in Fine-Line NMOS Field-Effect Transistors,” IEEE Transactions on Electron Devices, vol. 32, no. 11, pp. 2450–2453, Nov. 1985.CrossRefGoogle Scholar
  8. [8]
    F. Faccio, F. Anghinolfi, E. H. M. Heijne, P. Jarron, and S. Cristoloveanu, “Noise Contribution of the Body Resistance in Partially-Depleted SOI MOSFET’s,” IEEE Transactions on Electron Devices, vol. 45, no. 5, pp. 1033–1038, May 1998.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Jung-Suk Goo
    • 1
  • Simona Donati
    • 2
  • Chang-Hoon Choi
    • 1
  • Zhiping Yu
    • 1
  • Thomas H. Lee
    • 1
  • Robert W. Dutton
    • 1
  1. 1.Center forIntegrated SystemsStanford UniversityStanfordUSA
  2. 2.Dipartimento di ElettronicePolitecnico Di TorioTorioItaly

Personalised recommendations