Analysis of Hot-Carrier-Induced Oxide Degradation in MOSFETs by Means of Full-Band Monte Carlo Simulation

  • Yoshinari Kamakura
  • Kazuaki Deguchiand
  • Kenji Taniguchi


We demonstrate the investigations of oxide reliability by means of full-band Monte Carlo simulation. Firstly we discuss the accuracy of the scattering rates particularly for hot hole transport. It is shown that the quantum-yield experiment provides a means to verify the scattering models for hot carriers in MOS system. Secondly, the oxide breakdown is studied by using a substrate hot electron injection technique. Monte Carlo simulations are performed to examine the correlation between the oxide breakdown and the electron energy, and it is shown that the holes generated in the anode electrode play an important role in the oxide degradation: In addition, it is discussed that rigorous hot carrier simulations are necessary to study the reliability issues for ultra-thin oxide films used in advanced CMOS technology.


Impact Ionization Oxide Degradation Oxide Thickness Gate Oxide Oxide Breakdown 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Abramo, A., Baudry, L., Brunetti, R., Castagne, R., Charef, M., Dessenne, F., Dollfus, P., Dutton, R., Engl, W.L., Fauquembergue, R., Fiegna, C., Fischetti, M.V., Galdin, S., Goldsman, N., Hackel, M., Hamaguchi, C., Hess, K., Hennacy, K., Hesto, P., Higman, J.M., Iizuka, T., Jungemann, C., Kamakura, Y., Kosina, H., Kunikiyo, T., Laux, S.E., Lin, H., Maziar, C., Mizuno, H., Peifer, H.J., Ramaswamy, S., Sano, N., Scrobohaci, P.G., Selberherr, S., Takenaka, M., Tang, T.-W, Taniguchi, K., Thobel, J.L., Thoma, R., Tomizawa, K., Tomizawa, M., Vogelsang, T., Wang, S.-L., Wang, X., Yao, C.-S., Yoder, P.D., Yoshii, A. (1994): A comparison of numerical solutions of the Boltzmann transport equation for high-energy electron transport silicon. IEEE Trans. Electron Devices 41: 1646–1654CrossRefGoogle Scholar
  2. [2]
    Arnold, D., Cartier, E., DiMaria, D.J. (1994): Theory of high-field electron transport and impact ionization in silicon dioxide. Phys. Rev. B 49: 10278–10297CrossRefGoogle Scholar
  3. [3]
    Bude, J.D., Weir, B.E., Silverman, P.J. (1998): Explanation of stress-induced damage in thin oxides. In: Technical Digest of International Electron Devices Meeting, IEDM ’98, San Francisco, CA. IEEE, Piscataway, pp. 179–182Google Scholar
  4. [4]
    Cartier, E., Fischetti, M.V., Eklund, E.A., McFeely, F.R. (1993): Impact ionization in silicon. Appl. Phys. Lett. 62: 3339–3341Google Scholar
  5. [5]
    Chang, C., Hu, C., Brodersen, R.W. (1985): Quantum yield of electron impact ionization in silicon. J. Appl. Phys. 57: 302–309CrossRefGoogle Scholar
  6. [6]
    Chen, I.C., Holland, S., Young, K.K., Chang, C., Hu, C. (1986): Substrate hole current and oxide breakdown. Appl. Phys. Lett. 49: 669–671CrossRefGoogle Scholar
  7. [7]
    Cohen, M.L., Bergstresser, T.K. (1966): Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures. Phys. Rev. 141: 789–796CrossRefGoogle Scholar
  8. [8]
    Degraeve, R., Groeseneken, G., Bellens, R., Ogier, J.L., Depas, M., Roussel, P.J., Maes, H.E. (1998): New insights in the relation between electron trap generation and the statistical properties of oxide breakdown. IEEE Trans. Electron Devices 45: 904–911CrossRefGoogle Scholar
  9. [9]
    Degraeve, R. (ed.) (2000): Topical issue on oxide reliability. Semicond. Sci. Technol. 15: 425–490CrossRefGoogle Scholar
  10. [10]
    Deguchi, K., Ishida, A., Uno, S., Kamakura, Y., Taniguchi, K. (2000): Degradation of direct-tunneling gate oxide under hot-hole injection. Appl. Phys. Lett. 77: 1384–1386CrossRefGoogle Scholar
  11. [11]
    DiMaria, D.J., Stathis, J.H. (2001): Anode hole injection, defect generation, and breakdown in ultrathin silicon dioxide films. J. Appl. Phys. 89: 5015–5024CrossRefGoogle Scholar
  12. [12]
    Ezaki, T., Nakasato, H., Yamamoto, T., Hane, M. (2000): Simulation of hot hole currents in ultra-thin silicon dioxides: the relationship between time to breakdown and hot hole currents. In: Proceedings of the 2000 International Conference on Simulation of Semiconductor Processes and Devices, SISPAD 2000, Seattle, WA. IEEE, Piscataway, pp. 34–37Google Scholar
  13. [13]
    Fischetti, M.V., Laux, S.E. (1988): Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. Phys. Rev. B 38: 9721–9745CrossRefGoogle Scholar
  14. [14]
    Grant, W.N. (1973): Electron and hole ionization rates in epitaxial silicon at high electric fields. Solid-State Electron. 16: 1189–1203MathSciNetCrossRefGoogle Scholar
  15. [15]
    Kamakura, Y., Kawashima, I., Deguchi, K., Taniguchi, K. (2000): Verification of hot hole scattering rates in silicon by quantum-yield experiment J. Appl. Phys. 88: 5802–5809CrossRefGoogle Scholar
  16. [16]
    Kane, E.O. (1967): Electron scattering by pair production in silicon. Phys. Rev. 159: 624–631CrossRefGoogle Scholar
  17. [17]
    Kunikiyo, T., Takenaka, M., Kamakura, Y., Yamaji, M., Mizuno, H., Morifuji, M., Taniguchi, K., Hamaguchi, C. (1994): A Monte Carlo simulation of anisotropic electron transport in silicon including full band structure and anisotropic impact-ionization model. J. Appl. Phys. 75: 297–312CrossRefGoogle Scholar
  18. [18]
    Kunikiyo, T., Takenaka, M., Morifuji, M., Taniguchi, K., Hamaguchi, C. (1996): A model of impact ionization due to the primary hole in silicon for a full band Monte Carlo simulation. J. Appl. Phys. 79: 7718–7725CrossRefGoogle Scholar
  19. [19]
    McPherson, J.W., Khamankar, R.B., A.Shanware, A. (2000): Complementary model for intrinsic time-dependent dielectric breakdown. J. Appl. Phys. 88: 5351–5359CrossRefGoogle Scholar
  20. [20]
    Ottaviani, G., Reggiani, L., Canali, C., Nava, F., Quaranta, A.A. (1975): Hole drift velocity in silicon Phys. Rev. B 12: 3318–3329CrossRefGoogle Scholar
  21. [21]
    Shichijo, H., Hess, K. (1981): Band-structure-dependent transport and impact ionization in GaAs, Phys. Rev. B 23: 4197–4207CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Yoshinari Kamakura
    • 1
  • Kazuaki Deguchiand
    • 1
  • Kenji Taniguchi
    • 1
  1. 1.Department of Electronics and Information SystemsOsaka University 2-1 Yamada-oka, SuitaOsakaJapan

Personalised recommendations