Atomistic Front-End Process Modelling: A Powerful Tool for Deep-Submicron Device Fabrication

  • M. Jaraiz
  • P. Castrillo
  • R. Pinacho
  • I. Martin-Bragado
  • J. Barbolla


The complexity attained by current microelectronics process technology can hardly be handled with simulators based on the continuum approach. Over the last few years, atomistic Kinetic Monte Carlo has proven to be a new way to tackle the problems that arise as device dimension shrink into the deep submicron regime. We present some encouraging results of exploring the capabilities of this new process modelling approach.


Point Defect Dislocation Loop Extended Defect Kinetic Monte Carlo Versus Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Jaraiz, G. H. Gilmer, J. M. Poate, and T. D. de la Rubia, Appl. Phys. Lett. 68 (1997) p. 409.Google Scholar
  2. [2]
    L. Pelaz, M. Jaraiz, G. H. Gilmer, H. J. Gossmann, C. S. Rafferty, D. J. Eaglesham, and J. M. Poate, Appl. Phys. Lett. 70 (1997) p. 2285.Google Scholar
  3. [3]
    DADOS (Diffusion and Defects, Object-oriented Simulator), M. Jaraiz, L. Pelaz, E. Rubio, J. Barbolla, G. H. Gilmer, D. J. Eaglesham, H. J. Gossmann, and J. M. Poate, Mat. Res. Soc. Symp. Proc. 532 (1998) p.43.Google Scholar
  4. [4]
    D. J. Eaglesham, P. A. Stolk, H. J. Gossmann, and J. M. Poate, Appl. Phys. Lett. 65 (1994) p. 2305.Google Scholar
  5. [5]
    J. E. Rubio, M. Jaraiz, L. A. Bailon, J. Barbolla, M. J. Lopez, and G. H. Gilmer, Mat. Res. Soc. Symp. Proc. 514 (1998) p.127.Google Scholar
  6. [6]
    N.E.B. Cowern, G. Mannino, P. A. Stolk, F. Roozeboom. H. G. A. Huizing, J. G. M. van Berkum, F. Cristiano, A. Claverie, and M. Jaraiz, Phys. Rev. Lett. 82, (1999) 4460.Google Scholar
  7. [7]
    S. Takeda, Jap. J. Appl. Phys. 30 (1991) p. L639.Google Scholar
  8. [8]
    F. Cristiano, J. Grisolia, B. Colombeau, M. Omri, B. de Mauduit, A. Claverie, L. F. Giles, and N. E. B. Cowern, J. Appl. Phys., 87 (2000) p. 8420.Google Scholar
  9. [9]
    P. A. Stolk, H. J. Gossmann, D. J. Eaglesham, D.C. Jacobson, J.M. Poate, and H.S. Luftman, Appl. Phys. Lett. 66 (1995) p. 568.Google Scholar
  10. [10] R. Pinacho, M. Jara¨ªz, H. J. Gossmann, G. H. Gilmer, and J. L. Benton, Mat. Res. Soc. Spring Meeting 2000. (In press).Google Scholar
  11. [11]
    O. W. Holland, L. Xie, B. Nielsen, and D. S. Zhou, J. Electronics Mat., 25 (1996) p. 99.Google Scholar
  12. [12]
    P. J. Schultz, C. Jagadish, M. C. Ridgway, R. G. Elliman, and J. S. Williams, Phys. Rev. B, 44 (1991) p.9118.Google Scholar
  13. [13]
    R. G. Elliman, J. Linnros, and W. L. Brown, Mat. Res. Soc. Symp. Proc., 100 (1988) p. 363.Google Scholar
  14. [14]
    G. Z. Pan, K. N. Tu, and S. Prussin, Appl. Phys. Lett., 71 (1997) p.659.Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • M. Jaraiz
  • P. Castrillo
    • 1
  • R. Pinacho
    • 1
  • I. Martin-Bragado
    • 1
  • J. Barbolla
    • 1
  1. 1.Dept. de ElectronicaUniv. de ValladolidSpain

Personalised recommendations