Advertisement

Quantum Corrections in 3-D Drift Diffusion Simulations of Decanano MOSFETs Using an Effective Potential

  • J. R. Watling
  • A. R. Brown
  • A. Asenov
  • D. K. Ferry

Abstract

As MOSFET devices are aggressively scaled into the deep submicron regime quantum mechanical effects become increasingly important. We compare the recently proposed effective potential formalism with the density gradient approach for first order quantum simulations of sub 0.1μm MOSFETs within a modified drift diffusion framework.

Keywords

Threshold Voltage Quantum Correction Gate Length Bohmian Mechanic Substrate Doping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Chau, R., Kavalieros, J., Roberds, B., Schenker, R., Lionberger, D., Barlage, D., Doyle, B., Arghavani, R., Murthy, A. and Dewey, G., 30nm Physical Gate Length CMOS Transistors with 1.0 ps n-MOS and 1.7 ps p-MOS Gate Delays, IEDM Tech. Digest, 45–48, 2000Google Scholar
  2. [2]
    Ren, Z., Venugopal, R., Datta, S., Lundstrom, M., Jovanovic, D. and Fossum J., The Ballistic Nanotransistor: A Simulation Study, IEDM Tech. Digest, 715–718, 2000Google Scholar
  3. [3]
    Rafferty, C. S., Biegel, B., Yu, Z., Ancona, M. G., Bude, J. and Dutton, R. W., Multidimensional quantum effects simulation using a density gradient model and script-level programming technique, SISPAD’98, Eds De Meyer K, and Biesemans, 137–140, 1998Google Scholar
  4. [4]
    Asenov, A., Slavcheva, G., Brown, A. R., Davies, J. H. and Saini, S., Quantum Mechanical Enhancement of the Random Dopant Induced Threshold Voltage Flucations and Lowering in Sub 0.1µm MOSFETs, IEDM Tech. Digest, 535–538, 1999Google Scholar
  5. [5]
    Shifren, L., Akis, R. and Ferry, D. K., Correspondence between quantum and classical motion: comparing Bohmian mechanics with a smoothed effective potential approach, Physics Letters A, 274: 75–83, 2000MATHCrossRefGoogle Scholar
  6. [6]
    Ferry, D. K., Akis, R. and Vasileska, D., Quantum Effects in MOSFETs: Use of an Effective Potential in 3D Monte Carlo Simulation of Ultra-Short Channel Devices, IEDM Tech. Digest, 287–290, 2000Google Scholar
  7. [7]
    Stern, F., Iteration Methods for Calculating Self-Consistent Fields in Semiconductor Inversion Layers, Journal of Computational Physics, 6: 56–67, 1970MATHCrossRefGoogle Scholar
  8. [8]
    Jallepalli, S., Bude, J., Shih, W. K., Pinto, M. R., Maziar, C. M. and Tasch Jr., A. F., Electron and hole quantization and their impact on deep submicron p-and n- MOSFET characteristics, IEEE Trans. Electron Devices, 44: 297–303, 1997CrossRefGoogle Scholar
  9. [9]
    Asenov, A., Slavcheva, G., Brown, A. R., Davies, J. H. and Saini, S., Increase in the Random Dopant Induced Threshold Fluctuations and Lowering in Sub-100nm MOSFETs Due to Quantum Effects: A 3-D Density Gradient Simulation Study, IEEE Trans. Electron Devices, 48: 722–729, 2001CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • J. R. Watling
    • 1
  • A. R. Brown
    • 1
  • A. Asenov
    • 2
  • D. K. Ferry
    • 2
  1. 1.1University of GlasgowGlasgowScotland
  2. 2.2Arizona State UniversityTempeUSA

Personalised recommendations