Advertisement

A Unified Model of Dopant Diffusion in SiGe.

  • Ardechir Pakfar
  • A. Poncet
  • T. Schwartzmann
  • H. Jaouen

Abstract

The understanding of the effect of each physical mechanism driving dopant and point defect diffusion due to Ge leads to a unified formulation of diffusion for the usual dopants in SiGe material. The model calibration is deduced from a critical synthesis of the theoretical and experimental published studies.

Keywords

Point Defect SiGe Layer Diffusivity Ratio Boron Diffusion Dopant Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Braunstein R., Moore A.R. and Herman F. (1958): Intrinsic optical absorption in Germanium-Silicon alloys. Phys. Rev. 109(3), pp 695–710.CrossRefGoogle Scholar
  2. [2]
    Christensen J.S., Kuznetsov A.Y., Radamson H.H. and Svensson B.G. (2000): Phosphorus diffusion in SiGe. Fifth International conference on DIffusion in MATerials, DIMAT 2000, Paris (France), July 2000 (to be published).Google Scholar
  3. [3]
    Dutartre D., Bremond G., Souifi A. and Benyattou T. (1991): Excitonic photo-luminescence from Si-capped strained SiGe layers. Phys. Rev. B 44(20), pp 11525–11527.CrossRefGoogle Scholar
  4. [4]
    Kuznetsov A.Y., Cardenas J., Schmidt D.C., Svensson B.G. and Nylandsted Larsen A. (1999): Sb-enhanced diffusion in strained SiGe. Phys. Rev. B 59(11), pp 7274–7277.CrossRefGoogle Scholar
  5. [5]
    Kuznetsov A.Y., Christensen J.S., Linnarsson M.K., Svensson B.G., Radamson H.H., Grahn J. and Landgren G. (1999): Diffusion of Phosphorus in strained Si/SiGe/Si hetero-structures. MRS Symp. Proc. No. 568: “Silicon Front-End Processing-Physics and Technology of Dopant-Defect Interactions.” Edited by Gossmann H-J.L., Haynes T.E., Law M.E., Nylandsted Larsen A. and Odanaka S., pp 271–276 and references.Google Scholar
  6. [6]
    Lever R.F, Bonar J. and Willoughby A.F.W. (1998): Boron diffusion across Silicon - Silicon Germanium boundaries. J. Appl. Phys. 83(4), pp 1988–1994 and references.Google Scholar
  7. [7]
    Nylandsted Larsen A. (1998): Impurity Diffusion in SiGe Alloys: Strain and Composition Effects. MRS Symp. Proc. No. 532: “Silicon Front-End Technology-Materials Processing and Modeling.” Edited by Cowern N.E.B., Jacobson D.C., Griffin P.B., Packan P.A. and Webb R.P., pp 187–198 and references.Google Scholar
  8. [8]
    Willoughby A.F.W., Bonar J. and Paine A.D.N. (1999): Diffusion Mechanisms in SiGe Alloys. MRS Symp. Proc. No. 568: “Silicon Front-End Processing-Physics and Technology of Dopant-Defect Interactions” Edited by Gossmann H-J.L., Haynes T.E., Law M.E., Nylandsted Larsen A. and Odanaka S., pp 253–264 and references.Google Scholar
  9. [9]
    Zangenberg N.R., Fage-Pedersen J., Lundsgaard Hansen J. and Nylandsted Larsen A. (2000): Boron diffusion in strained and relaxed SiGe. Fifth International conference on DIffusion in MATerials, DIMAT 2000, Paris (France), July 2000 (to be published).Google Scholar
  10. [10]
    Zhao Y., Aziz M.J., Gossmann H-J., Mitha S. and Schiferl D. (1999): Activation volume for Boron diffusion in Silicon and implications for strained films Appl. Phys. Letters 74(1), pp 31–33 and references.Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Ardechir Pakfar
    • 1
  • A. Poncet
    • 1
  • T. Schwartzmann
    • 2
  • H. Jaouen
    • 2
  1. 1.STMicroelectronics850 rue Jean MonnetCrolles cedexFrance
  2. 2.LPM - 1NSA de LyonLyonVilleurbanne cedexFrance

Personalised recommendations