Determination of the Radiation Efficiency, Contrast and Sensitivity in Electron and Ion Lithography

  • K. Vutova
  • G. Mladenov
  • I. Raptis
Conference paper


Knowledge of the solubility rate dependence on exposure dose S(D) gives possibility to estimate the values of the radiation efficiency, sensitivity and contrast characteristics in electron and ion lithography. The idea for interconnection between the sensitivity and the contrast characteristics for an arbitrary combination of resist and developer (i.e. at a given molecular weight, resist density and radiation efficiency of the charged particles) is a base for the sensitivity optimisation in order to achieve the required contrast at chosen development conditions. The contrast parameter value ys (related to the traditionally used contrast parameter y d ) is determined by the slope of the dependence S(D) of the resist solubility rate Son the average exposure dose D.


Exposure Dose Radiation Efficiency Contrast Characteristic Electron Exposure Arbitrary Combination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Brewer G. Electron Beam Technology in Microelectronic Fabrication. Acad Press, 1980Google Scholar
  2. [2]
    Greeneich J.S.x J.Electrochem.Soc. (1975); 122:970CrossRefGoogle Scholar
  3. [3]
    Moreau W.M. x Optical Engineering. (1983); 22:181.CrossRefGoogle Scholar
  4. [4] IBM, U.S. Pat. 3,931,435.Google Scholar
  5. [5]
    Bowden M.x J.Elecrochem.Soc. (1981); 128:1304.CrossRefGoogle Scholar
  6. [6]
    Brault R.G., Miller L.J.x Polymer Engineering and Science (1980); 20:1064CrossRefGoogle Scholar
  7. [7]
    Karapiperis L., Adesida I., Lee C.A., Wolf E.D. J.Vac.Sci. & Technol. (1981); 19:1259.Google Scholar
  8. [8]
    Ryssel H., Haberger K., Kranz H.x J.Vac. Sci. & Technol. (1991); 19(4):1358.Google Scholar
  9. [9]
    Mladenov G., Seyfarth H.x Vacuum (1986): 36:649CrossRefGoogle Scholar
  10. [10]
    Vutova K., Mladenov G., Microelec. Eng. (accepted for publication) 2001Google Scholar
  11. [11]
    Raptis I. Grella L. Argitis P. Gentili M. Glezos N.x Microel. Eng.(1996); 30:295.CrossRefGoogle Scholar
  12. [12]
    Mladenov G. Dissertation for Dr.Sc.of Phys., Inst. of Electronics, Sofia, 1986, p.127.Google Scholar
  13. [13]
    Vutova K, x G.Mladenov. Thin Solid Films, (1991); 200:353–362.CrossRefGoogle Scholar
  14. [14]
    Greeneich J.S, x J.Appl.Phys. (1974); 45:5264.CrossRefGoogle Scholar
  15. [15]
    Murata K., E.Nomura and K.Nagami, J.Vac.Sci, & Technol.,(1979); 16:1734.CrossRefGoogle Scholar
  16. [16]
    Mladenov G., Emmoth B. x Appl.Phys.Lett. 1981; 38:1000.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • K. Vutova
    • 1
  • G. Mladenov
    • 1
  • I. Raptis
    • 2
  1. 1.Institute of ElectronicsBulgarian Academy of SciencesBulgaria
  2. 2.Inst.of MicroelectronicsNCSR “Demokritos”Greece

Personalised recommendations