Skip to main content

An Illumination Model for a Skin Layer Bounded by Rough Surfaces

  • Conference paper
  • First Online:
Rendering Techniques 2001 (EGSR 2001)

Part of the book series: Eurographics ((EUROGRAPH))

Included in the following conference series:

Abstract

In this paper we present a novel illumination model that takes into account multiple anisotropic scattering in a layer bounded by two rough surfaces. We compute the model by a discrete-ordinate solution of the equation of radiative transfer. This approach is orders of magnitude faster than a Monte Carlo simulation and does not suffer from any noisy artifacts. By fitting low order splines to our results we are able to build analytical shaders. This is highly desirable since animators typically want to texture map the parameters of such a shader for higher realism. We apply our model to the important problem of rendering human skin. Our model does not seem to have appeared before in the optics literature. Most previous models did not handle rough surfaces at the skin’s boundary. Also we introduce a simple analytical bidirectional transmittance distribution function (BTDF) for an isotropic rough surface by generalizing the Cook-Torrance model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Beckmann and A. Spizzichino. The Scattering of Electromagnetic Waves from Rough Surfaces. Pergamon, New York, 1963.

    MATH  Google Scholar 

  2. M. Born and E. Wolf. Principles of Optics. Sixth (corrected) Edition. Cambridge University Press, Cambridge, U.K., 1997.

    Google Scholar 

  3. S. Chandrasekhar. Radiative Transfer. Dover, New York, 1960.

    MATH  Google Scholar 

  4. R. L. Cook and K. E. Torrance. A Reflectance Model for Computer Graphics. ACM Computer Graphics (SIGGRAPH ’81),15(3):307–316, August 1981.

    Article  Google Scholar 

  5. P. Hanrahan and W. Krueger. Reflection from Layered Surfaces due to Subsurface Scattering. In Proceedings of SIGGRAPH ’93, pages 165–174. Addison-Wesley Publishing Company, August 1993.

    Google Scholar 

  6. J. E. Hansen and L. D. Travis. Light Scattering in Planetary Atmospheres. Space Science Reviews, 16:527–610, 1974.

    Article  Google Scholar 

  7. X. D. He. Physically-Based Modelsfor the Reflection, Transmission and Subsurface Scattering of Light by Smooth and Rough Surfaces, with Applications to Realistic Image Synthesis. PhD thesis, Cornell University, Ithaca, New York, 1993.

    Google Scholar 

  8. H. W. Jensen, S. R. Marschner, M. Levoy, and P. Hanrahan. A Practical Model for Subsurface Light Transport. In Computer Graphics Proceedings, Annual Conference Series, 2001, page (to appear), August 2001.

    Google Scholar 

  9. Z. Jin and K. Stamnes. Radiative transfer in nonuniformly refracting layered media: atmosphere-ocean system. Applied Optics, 33(3):431–442, January 1994.

    Article  Google Scholar 

  10. J. T. Kajiya and B. P. von Herzen. Ray Tracing Volume Densities. ACM Computer Graphics (SJGGRAPH’ 84),18(3):165–174, July 1984.

    Article  Google Scholar 

  11. E. P. F. Lafortune, S-C. Foo, K. E. Torrance, and D. P. Greenberg. Non-Linear Approximation of Reflectance Functions. In Computer Graphics Proceedings, Annual Conference Series, 1997, pages 117–126, August 1997.

    Google Scholar 

  12. E. Languénou, K. Bouatouch, and M. Chelle. Global illumination in presence of participating media with general properties. In Proceedings of the 5th Eurographics Workshop on Rendering, pages 69–85, Darmstadt, Germany, June 1994.

    Google Scholar 

  13. S. R. Marschner, S. H. Westin, E. P. F. Lafortune, K. E. Torrance, and D. P. Greenberg. Image-based brdf measurement including human skin. Eurographics Workshop on Rendering, 1999.

    Google Scholar 

  14. N. Max. Efficient light propagation for multiple anisotropic volume scattering. In Proceedings of the 5th Eurographics Workshop on Rendering, pages 87–104, Darmstadt, Germany, June 1994.

    Google Scholar 

  15. C. D. Mobley. A numerical model for the computation of radiance distributions in natural waters with wind-roughened surfaces. Limnology and Oceanography, 34(8):1473–1483, 1989.

    Article  Google Scholar 

  16. S. K. Nayar, K. Ikeuchi, and T. Kanade. Surface Reflection: Physical and Geometrical Perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(7):611–634, July 1991.

    Article  Google Scholar 

  17. NETLIB. The code is publicly available from http://netlib.org.

    Google Scholar 

  18. M. Pharr and P. Hanrahan. Monte Carlo Evaluation of Non-Linear Scattering Equations for Subsurface Reflection. In Computer Graphics Proceedings, Annual Conference Series, 2000, pages 75–84, July 2000.

    Google Scholar 

  19. G. N. Plass, G. W. Kattawar, and F. E. Catchings. Matrix operator theory of radiative transfer. 1: Rayleigh scattering. Applied Optics, 12(2):314–329, February 1973.

    Article  Google Scholar 

  20. A. A. Prahl, M. J. C. van Gernert,, and A. J. Welch. Determining the optical properties of turbid media by using the adding-doubling method. Applied Optics, 32:559–568, 1993.

    Article  Google Scholar 

  21. K. Stamnes and P. Conklin. A New Multi-Layer Discrete Ordinate Approach to Radiative Transfer in Vertically Inhomogeneous Atmospheres. Journal of Quantum Spectroscopy and Radiative Transfer, 31(3):273–282, 1984.

    Article  Google Scholar 

  22. K. E. Torrance and E. M. Sparrow. Theory for Off-Specular Reflection From Roughened Surfaces. Journal of the Optical Society of America, 57(9): 1105–1114, September 1967.

    Article  Google Scholar 

  23. V. V. Tuchin. Light scattering study of tissue. Physics — Uspekhi, 40(5):495–515, 1997.

    Article  Google Scholar 

  24. M. J. C. van Gernert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star. Skin optics. IEEE Transactions on Biomedical Engineering, 36(12):1146–1154, December 1989.

    Article  Google Scholar 

  25. B. van Ginneken, M. Stavridi, and J. J. Koenderink. Diffuse and specular reflectance from rough surfaces. Applied Optics, 37(1):130–139, January 1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this paper

Cite this paper

Stam, J. (2001). An Illumination Model for a Skin Layer Bounded by Rough Surfaces. In: Gortler, S.J., Myszkowski, K. (eds) Rendering Techniques 2001. EGSR 2001. Eurographics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6242-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6242-2_4

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83709-2

  • Online ISBN: 978-3-7091-6242-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics