Real-Time High Dynamic Range Texture Mapping

  • Jonathan Cohen
  • Chris Tchou
  • Tim Hawkins
  • Paul Debevec
Part of the Eurographics book series (EUROGRAPH)


This paper presents a technique for representing and displaying high dynamic-range texture maps (HDRTMs) using current graphics hardware. Dynamic range in real-world environments often far exceeds the range representable in 8-bit per-channel texture maps. The increased realism afforded by a high-dynamic range representation provides improved fidelity and expressiveness for interactive visualization of image-based models. Our technique allows for realtime rendering of scenes with arbitrary dynamic range, limited only by available texture memory.

In our technique, high-dynamic range textures are decomposed into sets of 8-bit textures. These 8-bit textures are dynamically reassembled by the graphics hardware’s programmable multitexturing system or using multipass techniques and framebuffer image processing. These operations allow the exposure level of the texture to be adjusted continuously and arbitrarily at the time of rendering, correctly accounting for the gamma curve and dynamic range restrictions of the display device. Further, for any given exposure only two 8-bit textures must be resident in texture memory simultaneously.

We present implementation details of this technique on various 3D graphics hardware architectures. We demonstrate several applications, including high-dynamic range panoramic viewing with simulated auto-exposure, real-time radiance environment mapping, and simulated Fresnel reflection.


Graphic Hardware Global Illumination Texture Memory Lighting Calculation Full Dynamic Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cabral. B., Olano, M., and Nemec, P. Reflection space image based rendering. Proceedings of SIGGRAPH 99 (August 1999), 165–170.Google Scholar
  2. 2.
    Chen, S. E. Quicktime VR — an image-based approach to virtual environment navigation. Proceedings of SIGGRAPH 95 (August 1995),29–38. ISBN 0-201-84776-0. Held in Los Angeles, California.Google Scholar
  3. 3.
    Debevec, P. Rendering synthetic objects into real scenes: Bridging traditional and image-based graphics with global illumination and high dynamic range photography. In SIGGRAPH 98 (July 1998).Google Scholar
  4. 4.
    Debevec, P. E., and Malik, J. Recovering high dynamic range radiance maps from photographs. In SIGGRAPH 97 (August 1997), pp. 369–378.Google Scholar
  5. 5.
    Debevec, P. E., Yu, Y., and Borshukov, G. D. Efficient view-dependent image-based rendering with projective texture-mapping. In 9th Eurographics workshop on Rendering (June 1998), pp. 105–116.Google Scholar
  6. 6.
    Diefenbach, P. Pipeline Rendering: Interaction and Realism through Hardware-based Multi-Pass Rendering. PhD thesis, University of Pennsylvania, 1996.Google Scholar
  7. 7.
    Gortler, S. J., Grzeszczuk, R., Szeliski, R., and Cohen, M. F. The Lumigraph. In SIGGRAPH 96 (1996), pp.43–54.Google Scholar
  8. 8.
    Green, S. Personal communication, May 2001.Google Scholar
  9. 9.
    Greene, N. Environment mapping and other application of world projections. IEEE Computer Graphics and Applications 6, 11 (November 1986),21–29.Google Scholar
  10. 10.
    Haeberli, P., and Segal, M. Quantization techniques for visualization of high dynamic range pictures. In Fourth Eurographics Workshop on Rendering (Paris, France) (June 1993), pp. 7–18.Google Scholar
  11. 11.
    Haeberli, P., and Segal, M. Texture mapping as A fundamental drawing primitive. In Fourth Eurographics Workshop on Rendering (June 1993), M. F. Cohen, C. Puech, and F. Sillion, Eds., Eurographics, pp. 259–266.Google Scholar
  12. 12.
    Heidrich, W., and Seidel, H.-P. Realistic, hardware-accelerated shading and lighting. Proceedings of SIGGRAPH 99 (August 1999),171–178. ISBN 0-20148-560-5. Held in Los Angeles, California.Google Scholar
  13. 13.
    Kautz, J., and McCool, M. D. Approximation of glossy reflection with prefiltered environment maps. Graphics Interface (2000),119–126. ISBN 1-55860-632-7.Google Scholar
  14. 14.
    Kautz, J., and McCool, M. D. Interactive rendering with arbitrary BRDFs using separable approximations. Eurographics Rendering Workshop 1999 (June 1999).Google Scholar
  15. 15.
    Larson, G. W. Logluv encoding for full-gamut, high-dynamic range images. Journal of Graphics Tools 3, 1 (1998), 15–31. ISSN 1086-7651.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Larson, G. W., Rushmeier, H., and Piatko, C. A visibility matching tone reproduction operator for high dynamic range scenes. IEEE Transactions on Visualization and Computer Graphics 3, 4 (October — December 1997),291–306.Google Scholar
  17. 17.
    Levoy, M., and Hanrahan, P. Light field rendering. In SIGGRAPH 96 (1996), pp. 31–42.Google Scholar
  18. 18.
    Lindholm, E., Kilgard, M., and Moreton, H. A user-programmable vertex engine. In SIGGRAPH 2001 (2001).Google Scholar
  19. 19.
    Nvidia Corporation. NVIDIA OpenGL extension specifications. Tech. rep., NVIDIA Corporation, 2001.Google Scholar
  20. 20.
    Ofek, E., and Rappoport, A. Interactive reflections on curved objects. Proceedings of SIGGRAPH 98 (July 1998), 333–342. ISBN 0-89791-999-8. Held in Orlando, Rorida.Google Scholar
  21. 21.
    Pattanaik, S. N., Ferwerda, J. A., Fairchild, M. D., and Greenberg, D. P. A multiscale model of adaptation and spatial vision for realistic image display. Proceedings of SIGGRAPH 98 (July 1998), 287–298.Google Scholar
  22. 22.
    Pattanaik, S. N., Tumblin, J. E., Yee, H., and Greenberg, D. P. Time-dependent visual adaptation for realistic image display. Proceedings of SIGGRAPH 2000 (July 2000), 47–54. ISBN 1-58113-208-5.Google Scholar
  23. 23.
    Peercy, M. S., Olano, M., Airey, J., and Ungar, P. J. Interactive multi-pass programmable shading. Proceedings of SIGGRAPH 2000 (July 2000), 425–432. ISBN 1-58113-208-5.Google Scholar
  24. 24.
    Pulli, K., Cohen, M., Duchamp, T., Hoppe, H., Shapiro, L., and Stuetzle, W. View-based rendering: Visualizing real objects from scanned range and color data. In Eighth Eurographics Workshop on Rendering (June 1997), pp. 23–34.Google Scholar
  25. 25.
    Rogers, D. TNT 8-stage setup in Direct3D. Tech. rep., NVIDIA Corporation, 2001.Google Scholar
  26. 26.
    Scheel, A., Stamminger, M., and Seidel, H.-P. Tone reproduction for interactive walkthroughs. In Eleventh Eurographics Workshop on Rendering (2000).Google Scholar
  27. 27.
    Schlick, C. High dynamic range pixels. Graphics Gems IV (1994), 422–429.Google Scholar
  28. 28.
    Tumblin, J., Hodgins, J. K., and Guenter, B. K. Two methods for display of high contrast images. ACM Transactions on Graphics 18, 1 (January 1999),56–94. ISSN 0730-0301.CrossRefGoogle Scholar
  29. 29.
    Tumblin, J., and Rushmeier, H. E. Tone reproduction for realistic images. IEEE Computer Graphics & Applications 13, 6 (November 1993),42–48.CrossRefGoogle Scholar
  30. 30.
    Tumblin, J., and Turk, G. Leis: A boundary hierarchy for detail-preserving contrast reduction. Proceedings of SIGGRAPH 99 (August 1999),83–90. ISBN 0-20148-560-5. Held in Los Angeles, California.Google Scholar
  31. 31.
    Ward, G. Real pixels. Graphics Gems II (1991), 80–83.Google Scholar
  32. 32.
    Ward, G. J. The RADIANCE lighting simulation and rendering system. In SIGGRAPH 94 (July 1994), pp. 459–472.Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Jonathan Cohen
    • 1
  • Chris Tchou
    • 1
  • Tim Hawkins
    • 1
  • Paul Debevec
    • 1
  1. 1.Institute for Creative TechnologiesUniversity of Southern CaliforniaMarina del ReyUSA

Personalised recommendations