Reflected and Transmitted Irradiance from Area Sources using Vertex Tracing

  • Michael M. Stark
  • Richard F. Riesenfeld
Conference paper
Part of the Eurographics book series (EUROGRAPH)


Computing irradiance analytically from polygonal luminaires in polygonal environments has proven effective for direct lighting applications in diffuse radiosity environments. Methods for analytic integration have traditionally used edge-based solutions to the irradiance integral; our previous work presented a vertex-based analytic solution, allowing irradiance to be computed incrementally by ray tracing the apparent vertices of the luminaire. In this work we extend the vertex tracing technique to the analytic computation of irradiance from a polygonal luminaire in other indirect lighting applications: transmission through non-refractive transparent polygons, and reflection off perfectly specular polygons. Furthermore we propose an approximate method for computing transmitted irradiance through refractive polyhedra. The method remains effective in the presence of blockers.


Mirror Plane Receiver Point Global Illumination Virtual Source Apparent Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    James Arvo. Backward ray tracing. In SIGGRAPH’ 86 Developments in Ray Tracing seminar notes, volume 12, August 1986.Google Scholar
  2. 2.
    James Arvo. Analytic Methods for Simulated Light Transport. PhD thesis, Yale University, 1995.Google Scholar
  3. 3.
    Min Chen. Mathematical Methods for Image Synthesis. PhD thesis, California Institute of Technology, 2001.Google Scholar
  4. 4.
    Min Chen and J. Arvo. Pertubation methods for interactive specular reflections. IEEE Transactions on Visualization and Computer Graphics, 6(3):253–264, July-September 2000.CrossRefGoogle Scholar
  5. 5.
    Min Chen and James Arvo. A Closed-Form Solution for the Irradiance Due To Linearly Varying Luminaires. In B. Peroche and H. Rushmeier, editors, Rendering Techniques 2000 (Proceedings of the Eleventh Eurographics Workshop on Rendering), New York, NY, 2000. Springer Wien.137–148.Google Scholar
  6. 6.
    Michael F. Cohen and John R. Wallace. Radiosity and Realistic Image Synthesis. Academic Press Professional, Cambridge, MA, 1993.MATHGoogle Scholar
  7. 7.
    George Dretakkis and Eugene Fiume. A fast shadow algorithm for area light sources using backprojection. In Andrew Glassner, editor, Proceedings of SIGGRAPH’ 94 (Orlando, Floritla, July 24–29, 1994), Computer Graphics Proceedings, Annual Conference Series, pages 223–230. ACM SIGGRAPH, ACM Press, July 1994. ISBN0-89791-667-0.Google Scholar
  8. 8.
    Fréda Durand, George Drettakis, and Claude Poech. The visibility skeleton: A powerful and efficient multi-purpose global visibility tool. In Turner Whitted, editor, SIGGRAPH 97 Conference Proceedings, Annual Conference Series, pages 89–100. ACM SIGGRAPH, Addison Wesley, August 1997. ISBN 0-89791-896-7.Google Scholar
  9. 9.
    H. Fuchs, Z. M. Kedem, and B. F. Naylor. On visible surface generation by a priori tree structures. volume 14, pages 124–133, July 1980.Google Scholar
  10. 10.
    Xavier Granier, George Drettakis, and Bruce Walter. Fast Global Illumination Including Specular Effects. In B. Peroche and H. Rushmeier, editors, Rendering Techniques 2000 (Proceedings of the Eleventh Eurographics Workshop on Rendering), pages 47–58, New York, NY, 2000. Springer Wien.Google Scholar
  11. 11.
    Eric Haines and John Wallace. Shaft culling for efficient ray-traced radiosity. In Eurographics Workshop on Rendering, 1991.Google Scholar
  12. 12.
    Eugene Hecht. Optics. Addison Wesley Longman, third edition, 1998.Google Scholar
  13. 13.
    Paul S. Heckbert and Pat Hanrahan. Beam tracing polygonal objects. In Hank Christiansen, editor, Computer Graphics (SIGGRAPH ’84 Proceedings), volume 18, pages 119–127, July 1984.Google Scholar
  14. 14.
    Wolfgang Heidrich, Hendrik Lensch, Michael F. Cohen, and Hans-Peter Seidel. Light Field Techniques for Reflections and Refractions. In D. Lischinski and G. W. Larson, editors, Rendering Techniques 1999 (Proceedings of the Tenth Eurographics Workshop on Rendering), pages 187–196, New York, NY, 1999. Springer Wien.Google Scholar
  15. 15.
    Henrik Wann Jensen. Global illumination using photon maps. In Xavier Pueyo and Peter Schröder, editors, Eurographics Rendering Workshop 1996, pages 21–30, New York City, NY, June 1996. Eurographics, Springer Wien. ISBN 3-211-82883-4.Google Scholar
  16. 16.
    Henrik Wann Jensen. Rendering caustics on non-lambertian surfaces. Computer Graphics Forum, 16(1):57–64, 1997. ISSN 0167-7055.CrossRefGoogle Scholar
  17. 17.
    Henrik Wann Jensen and Niels Jørgen Christensen. A practical guide to global illumination using photon maps (sigggraph 2000 course notes 8), July 2000.Google Scholar
  18. 18.
    Don P. Mitchell and Pat Hanrahan. Illumination from curved reflectors. In Edwin E. Catmull, editor, Computer Graphics (SIGGRAPH’ 92 Proceedings), volume 26, pages 283–291, July 1992.Google Scholar
  19. 19.
    J. F. Nye. Natural Focusing and Fine Structure of Light. IOP Publishing Ltd, 1989.Google Scholar
  20. 20.
    H. Plantinga and C.R. Dyer. Visibility, occlusion, and the aspect graph. International Journal of Computer Vision, 5(2):137–160, 1990.CrossRefGoogle Scholar
  21. 21.
    Holly E. Rushmeier and Kenneth E. Torrance. Extending the radiosity method to include specularly reflecting and translucent materials. ACM Transactions on Graphics, 9(1):1–27, January 1990.MATHCrossRefGoogle Scholar
  22. 22.
    Gernot Schauffler and Henrik Wann Jensen. Ray Tracing Point Sampled Geometry. In B. Peroche and H. Rushmeier, editors, Rendering Techniques 2000 (Proceedings of the Eleventh Eurographics Workshop on Rendering), pages 319–328, New York, NY, 2000. Springer Wien.Google Scholar
  23. 23.
    Peter Shirley. A ray tracing method for illumination calculation in diffuse-specular scenes. In Proceedings of Graphics Interface’ 90, pages 205–212, May 1990.Google Scholar
  24. 24.
    Peter Shirley. Realistic Ray Tracing. A K Peters, Ltd, 2000.Google Scholar
  25. 25.
    François Sillion and Claude Puech. Radiosity and Global Illumination. Morgan Kaufmann, San Francisco, 1994.Google Scholar
  26. 26.
    Cyril Soler and François X. Sillion. Fast Calculation of Soft Shadow Textures Using Convolution. In Michael Cohen, editor, SIGGRAPH 98 Conference Proceedings, Annual Conference Series, pages 321–332. ACM SIGGRAPH, Addison Wesley, July 1998. ISBN 0-89791-999-8.Google Scholar
  27. 27.
    Michael M. Stark. Vertex-based formulations of irradiance from polygonal sources. Technical Report UUCS-00-012, Department of Computer Science, University of Utah, May 2000.Google Scholar
  28. 28.
    Michael M. Stark. Analytic Illumination in Polyhedral Environments. PhD thesis, University of Utah, 2001.Google Scholar
  29. 29.
    Michael M. Stark, Elaine Cohen, Tom Lyche, and Richard F. Riesenfeld. Computing exact shadow irradiance using splines. Proceedings of SIGGRAPH 99, pages 155–164, August 1999. ISBN 0-20148-560-5. Held in Los Angeles, California.Google Scholar
  30. 30.
    Michael M. Stark and Richard F. Riesenfeld. Exact Illumination in Polygonal Environments using Vertex Tracing. In B. Peroche and H. Rushmeier, editors, Rendering Techniques 2000 (Proceedings of the Eleventh Eurographics Workshop on Rendering), pages 149–160, New York, NY, 2000. Springer Wien.Google Scholar
  31. 31.
    Spencer W. Thomas. Dispersive refraction in ray tracing. The Visual Computer, 2(1):3–8, January 1986.CrossRefGoogle Scholar
  32. 32.
    Alan Watt and Mark Watt. Advanced Animation and Rendering Techniques. ACM Press, 1992.Google Scholar
  33. 33.
    Mark Watt. Light-water interaction using backward beam tracing. In Forest Baskett, editor, Computer Graphics (SIGGRAPH’ 90 Proceedings), volume 24, pages 377–385, August 1990.Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Michael M. Stark
    • 1
  • Richard F. Riesenfeld
    • 1
  1. 1.University of UtahSalt Lake CityUSA

Personalised recommendations