Advertisement

Point-Based Impostors for Real-Time Visualization

  • Michael Wimmer
  • Peter Wonka
  • François Sillion
Part of the Eurographics book series (EUROGRAPH)

Abstract

We present a new data structure for encoding the appearance of a geometric model as seen from a viewing region (view cell). This representation can be used in interactive or real-time visualization applications to replace a complex model by an impostor, maintaining high quality rendering while cutting down rendering time. Our approach relies on an object-space sampled representation similar to a point cloud or a layered depth image, but introduces two fundamental additions to previous techniques. First, the sampling rate is controlled to provide sufficient density across all possible viewing conditions from the specified view cell. Second, a correct, antialiased representation of the plenoptic function is computed using Monte Carlo integration. Our system therefore achieves high quality rendering using a simple representation with bounded complexity. We demonstrate the method for an application in urban visualization.

Keywords

Street Segment Sampling Plane Light Field Graphic Hardware Monte Carlo Integration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Daniel Aliaga, Jon Cohen, Andrew Wilson. Eric Baker. Hansong Zhang, Carl Erikson, Keny Hoff, Tom Hudson, Wolfgang Stürzlinger, Rui Bastos, Mary Whitton, Fred Brooks, and Dinesh Manoclia. MMR: An interactive massive model rendering system using geometric and image-based acceleration. In 1999 Symposium on interactive 3D Graphics, pages 199–206,1999.Google Scholar
  2. 2.
    Daniel G. Aliaga and Anselmo Lastra. Automatic image placement to provide a guaranteed frame rate. Computer Graphics, 33:307–316, 1999.Google Scholar
  3. 3.
    Jin-Xiang Chai, Xin Tong, Shing-Chow Chan. and Heung-Yeung Shum. Plenoptic sampling. In Siggrapph 2000, Computer Graphics Proceedings. pages 307–318, 2000.Google Scholar
  4. 4.
    Chun-Fa Chang, Gary Bishop. and Anselmo Lastra. LDI tree: A hierarchical representation for image-based rendering. In Siggraph 1999, Computer Graphics Proceedings, pages 291–298. ACM Siggraph. 1999.Google Scholar
  5. 5.
    NVIDIA Corporation. Nv_vertex_program extension specification. 2000. available at http://www.nvidia.com/Marketing/Developer/DevRel.nsf/Pro-grammingResourcesFrame.Google Scholar
  6. 6.
    NVIDIA Corporation. Using texture compression in opengl, 2000. available at http://www.nvidia.comlMarketing/Developer/DevRel.nsflWhitepapersFrame.Google Scholar
  7. 7.
    Lucia Darsa. Bruno Costa Silva. and Amitabh Varshney. Navigating static environments using image-space simplification and morphing. In 1997 Symposium on Interactive 3D Graphics. pages 25–34.1997. ISBN 0-89791-884-3.Google Scholar
  8. 8.
    Xavier Decoret, Franrçois Sillion, Gernot Schaufler. and Julie Dorsey. Multi-layered impostors for accelerated rendering. Computer Graphics Forum, 18(3):61–73, 1999. ISSN 1067-7055.CrossRefGoogle Scholar
  9. 9.
    Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. The lumigraph. In SIGGRAPH 96 Conference Proceedings, pages 43–54, 1996. held in New Orleans, Louisiana, 04–09 August 1996.Google Scholar
  10. 10.
    J. P. Grossman and William J. Dally. Point sample rendering. In Rendering Techniques’ 98, pages 181–192. 1998.Google Scholar
  11. 11.
    Marc Levoy and Pat Hanrahan. Light field rendering. In SIGGRAPH 96 Conference Proceedings, pages 31–42,1996. held in New Orleans, Louisiana, 04–09 August 1996.Google Scholar
  12. 12.
    Marc Levoy and Turner Whitted. The use of points as a display primitive. Technical Report TR 85-022, University of Carolina at Chapel Hill, 1985.Google Scholar
  13. 13.
    Dani Lischinski and Ari Rappoport. Image-based rendering for non-diffuse synthetic scenes. In Rendering Techniques’ 98, pages 301–314,1998.Google Scholar
  14. 14.
    P. Maciel and P. Shirley. Visual navigation of large environments using textured clusters. SIGGRAPH Symposium on Interactive 3-D Graphics, pages 95–102, 1995.Google Scholar
  15. 15.
    William R. Mark, Leonard McMillan, and Gary Bishop. Post-rendering 3D warping. In 1997 Symposium on Interactive 3D Graphics, pages 7–16,1997. ISBN 0-89791-884-3.Google Scholar
  16. 16.
    Nelson Max. Hierarchical rendering of trees from precomputed multi-layer Z-buffers. In Eurographics Rendering Workshop 1996, pages 165–174, 1996. ISBN 3-211-82883-4.Google Scholar
  17. 17.
    Leonard McMillan and Gary Bishop. P1enoptic modeling: An image-based rendering system. In SIGGRAPH 95 Conference Proceedings, pages 39–46, 1995. held in Los Angeles, California, 06–11 August 1995.Google Scholar
  18. 18.
    Alexandre Meyer and Fabrice Neyret. Interactive volumetric textures. In Rendering Techniques’ 98, pages 157–168, 1998.Google Scholar
  19. 19.
    Gavin Miller, Steven Rubin, and Dulce Ponceleon. Lazy decompression of surface light fields for precomputed global illumination. In Rendering Techniques’ 98, pages 281–292, 1998.Google Scholar
  20. 20.
    Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and Markus Gross. Surfels: Surface elements as rendering primitives. In Siggraph 2000, Computer Graphics Proceedings, pages 335–342,2000.Google Scholar
  21. 21.
    Szymon Rusinkiewicz and Marc Levoy. QSplat: A multiresolution point rendering system for large meshes. In Siggraph 2000, Computer Graphics Proceedings, pages 343–352, 2000.Google Scholar
  22. 22.
    G. Schaufler and W. Stürzlinger. A three-dimensional image cache for virtual reality. In Proceedings of EUROGRAPHICS’ 96, 1996.Google Scholar
  23. 23.
    Gernot Schaufler. Per-object image warping with layered impostors. In Rendering Techniques’ 98, pages 145–156, 1998.Google Scholar
  24. 24.
    Jonathan Shade, Dani Lischinski, David Salesin, Tony DeRose, and John Snyder. Hierarchical image caching for accelerated walkthroughs of complex environments. In SIGGRAPH 96 Conference Proceedings, pages 75–82, 1996. held in New Orleans, Louisiana, 04–09 August 1996.Google Scholar
  25. 25.
    Jonathan W. Shade, Steven J. Gortler, Li-wei He, and Richard Szeliski. Layered depth images. In SIGGRAPH 98 Conference Proceedings, pages 231–242, 1998. ISBN 0-89791-999-8.Google Scholar
  26. 26.
    Franrçois Sillion, G. Drettakis. and B. Bodelet. Efficient impostor manipulationfor real-time visualization of urban scenery. Computer Graphics Forum. 16(3):207–218, 1997. Proceedings of Eurographics’ 97. ISSN 1067-7055.CrossRefGoogle Scholar
  27. 27.
    Peter Wonka, Michael Wimmer, and Dieter Schmalstieg. Visibility preprocessing with occluder fusion for urban walkthroughs. In Rendering Techniques 2000. pages 71–82, 2000.Google Scholar
  28. 28.
    Daniel N. Wood, Daniel I. Azuma, Ken Aldinger, Brian Curless, Tom Duchamp, David H. Salesin, and Werner Stuetzle. Surface light fields for 3D photography. In Siggraph 2000, Computer Graphics Proceedings, pages 287–296,2000.Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Michael Wimmer
    • 1
  • Peter Wonka
    • 1
  • François Sillion
    • 1
  1. 1.iMAGIS - GRAVIR/IMAG-INRIAVienna University of TechnologyAustria

Personalised recommendations