Advertisement

Computational Issues in Model Predictive Control

  • Luigi Chisci
  • Giovanni Zappa
Conference paper

Abstract

Model Predictive Control (MPC) is an effective but computationally demanding control design methodology. The paper surveys different techniques used to alleviate the on-line computational burden in MPC.

Keywords

Optimal Control Problem Model Predictive Control Feedback Mapping Nonlinear Model Predictive Control Positive Weight Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.B. Rawlings, “Tutorial overview of model predictive contral”, IEEE Control Systems Magazine, vol. 20. pp. 38–52, 2000.CrossRefGoogle Scholar
  2. [2]
    E.F. Camacho and C. Bordons, Model predictive control in the process industry. Springer, Landen, 1995.CrossRefGoogle Scholar
  3. [3]
    L. Chisci and G. Zappa, “Fast algorithm for a constrained infinitehorizon LQ problem”, Int. Journal of control, vol. 72, pp. 1020–1026, 1999.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    L. Chisci, J.A. Rossiter and G. Zappa, “Iterative active set method for efficient on-line MPC design”, in Nonlinear model predictive control, pp. 336–345; F. Allgower and A. Zheng (Eds.), Birkhauser, Basel I 2000.Google Scholar
  5. [5]
    L. Chisci and G. Zappa, “Fast QP algorithms for predictive control”, Proc. 98th IEEE GDG, pp. 4589-4595, Phoenix, U.S.A., 1999.Google Scholar
  6. [6]
    C.V. Rao, S.J. Wright and J.B. Rawlings, “On the application of interior point methods to model predictive control”, JOTA, vol. 99, pp. 723–757, 1998.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    L. Chisci and J.A. Rossiter, “Efficient mixed weights least-squares algorithm for constrained predictive control”, Systems Science, vol. 23, pp. 5–17, 1997.MathSciNetMATHGoogle Scholar
  8. [8]
    L. Chisci and J.A. Rossiter, “Iterative weighted least-squares approach to constrainecl LQ predictive control”, Proc. IEEE Conf. on Control Applications, pp. 1145–1149, Trieste, 1998.Google Scholar
  9. [9]
    A. Bempora, M. Morari, V. Dua and E.N. Pistikopoulos, “The explicit solution of model predictive control via multiparametric quadratic programming”, Proc. ACG 2000, Chicago, U.S.A., 2000.Google Scholar
  10. [10]
    T. Parisini and R. Zoppoli, “A receding-horizon regulator for nonlinear systems and a neural approximation”, Automatica, vol. 31, pp. 1443–1451. 2000.MathSciNetCrossRefGoogle Scholar
  11. [11]
    D. Chmielewski and V. Manousiouthakis, “On constrained infinitetime linear quadratic optimal control”, Systems and Contral Letters, vol. 29. pp. 121–129, 1996.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Luigi Chisci
  • Giovanni Zappa
    • 1
  1. 1.DSIUniversità di FirenzeFirenzeItaly

Personalised recommendations