An Evolutionary Approach to the Zero/One Knapsack Problem: Testing Ideas from Biology

  • Anabela Simões
  • Ernesto Costa
Conference paper


The transposition mechanism, widely studied in previous publications, showed that when used instead of the standard crossover operators, allows the genetic algorithm to achieve better solutions. Nevertheless, all the studies made concerning this mechanism always focused the domain of function optimization. In this paper, we present an empirical study that compares the performances of the transposition-based GA and the classical GA solving the 0/1 knapsack problem. The obtained results show that, just like in the domain of function optimization, transposition is always superior to crossover.


Genetic Algorithm Penalty Function Knapsack Problem Genetic Operator Binary String 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    De Falco, I., Iazzetta, A., Tarantino, E., Della Cioppa, A.: On Biologically Inspired Mutations: The Translocation. In Late Breaking Papers at the 2000 Genetic and Evolutionary Computation Conference (GECCO’2000), pp. 70–77, Las Vegas, USA, 8-12 July 2000.Google Scholar
  2. [2]
    Goldberg, D. E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Company, Inc, 1989.Google Scholar
  3. [3]
    Gould, I. L., Keeton, W. T.: Biological Science. W. W. Norton & Company 1996.Google Scholar
  4. [4]
    Harvey, I.: The Microbial Genetic Algorithm. Submitted as a Letter to Evolutionary Computation. MIT Press, 1996.Google Scholar
  5. [5]
    Holland, I. H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. 1st MIT Press edition, MIT Press 1992.Google Scholar
  6. [6]
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. 3rd Edition Springer-Verlag 1999.Google Scholar
  7. [7]
    Nawa, N., Furuhashi, T., Hashiyama, T., Uchikawa, Y.: A Study of the Discovery of Relevant Fuzzy Rules Using Pseudo-Bacterial Genetic Algorithm. IEEE Transactions on Industrial Electronics, 1999.Google Scholar
  8. [8]
    Simöes, A., Costa, E.: Transposition: A Biologically Inspired Mechanism to Use with Genetic Algorithms. In the Proceedings of the Fourth International Conference on Neural Networks and Genetic Algorithms (ICANNGA’99), pp. 612–619. Springer-Verlag 1999.Google Scholar
  9. [9]
    Simöes, A., Costa, E.: Transposition versus Crossover: An Empirical Study. Banzhaf, W., Daida, I., Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela, M., and Smith, R. E. (eds.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’99), pp. 612–619, Orlando, Florida USA, CA: Morgan Kaufmann 1999.Google Scholar
  10. [10]
    Simöes, A., Costa, E.: Using Genetic Algorithms with Asexual Transposition. In D. Whitley, D. Goldberg, E. Cantu-Paz, L. Spector, I. Parrnee, H. Beyer. (eds.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’2000), pp. 323–330, Las Vegas, USA, CA: Morgan Kaufmann 2000.Google Scholar
  11. [11]
    Smith, P.: Conjugation — A Bacterially Inspired Form of Genetic Recombination. In Late Breaking Papers of the First International Conference on Genetic Programming. Stanford University, California, 1996.Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Anabela Simões
    • 1
    • 2
  • Ernesto Costa
    • 2
  1. 1.Instituto Superior de Engenharia de CoimbraQuinta da Nora, CoimbraPortugal
  2. 2.Centro de Informática e Sistemas da Universidade de CoimbraPinhal de Marrocos, CoimbraPortugal

Personalised recommendations