NeuroHough: A Neural Network for Computing the Hough Transform

  • M. Köppen
  • A. Soria-Frisch
  • R. Vicente-García


A new paradigm for the implementation of the Hough Transform (HT) is presented in this paper. The paradigm makes use of the neural networks’ properties as function approximators in order to avoid some problems of the standard HT implementation. Some encouraging results are presented.


Parameter Space Image Space Hough Transform Geometrical Element Neural Architecture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R.C. Agrawal, R.K. Shevgaonkar, S.C. Sahasrabudhe (1996). A fresh look at the Hough transform, Pattern Rec. Letters 17(10) 1065–1068.CrossRefGoogle Scholar
  2. [2]
    D.H. Ballard (1981). Generalizing the Hough Transform to Detect Arbitrary Shapes, Pattern Recognition 13(2) 111–122.CrossRefMATHGoogle Scholar
  3. [3]
    D.H. Ballard (1984). Parameter Nets, Artificial Intelligence 22,235–267.CrossRefGoogle Scholar
  4. [4]
    I. Fermin, A. Imiya, A. Jchikawa (1996). Randomized polygon search for planar motion detection, Pattern Rec. Letters 17(10) 1109–1115.CrossRefGoogle Scholar
  5. [5]
    R.C. Gonzalez, R.E. Woods (1993). Digital Image Processing, Addison-Wesley Pub. Co.Google Scholar
  6. [6]
    W.E.L Grimson, D.P. Huttenlocher (1990). On the Sensitivity of the Hough Transform for Object Recognition, IEEE Trans. PAMI 12(3) 255–273.CrossRefGoogle Scholar
  7. [7]
    J.H. Han, L.T. Kóczy, T. Poston (1994). Fuzzy Hough Transform, Pat. Rec. Letters 15(7) 649–658.CrossRefGoogle Scholar
  8. [8]
    P.V.C. Hough (1962). A methOd and means for recognizing complex patterns, U.S. Patent 3,069,654.Google Scholar
  9. [9]
    J. Illingworth, J. Kittler (1987). The Adaptive Hough Tramform, IEEE Trans. PAMI 9(5) 690–697.CrossRefGoogle Scholar
  10. [10]
    J. IIlingworth, J. Kittler (1987). A Survey of the Hough Transform, Comp. Vision, Graphics, and Image Processing 44,87–116.Google Scholar
  11. [11]
    D. Ioannou, E.T. Dugan, A.F. Laine (1996). On the uniqueness of the representation of a convex polygon by its Hough tranJform, Pat. Rec. Letters 17(12) 1259–1264.CrossRefMATHGoogle Scholar
  12. [12]
    V.F. Leavers, J.F. Boyce (1987). The Radon transform and its application to shape parametrization in machine vision, Image and Vision Computing 5(2) 161–166.CrossRefGoogle Scholar
  13. [13]
    V.F. Leavers (1992) Use of the Radon transform as a method of extracting information about shape in two dimensions, Image and Vision Comp. 10(2) 99–107.CrossRefGoogle Scholar
  14. [14]
    H. Li, M.A. Lavin, RJ. LeMaster (1986). Fast Hough Tramfor: A Hierarchial Approach, Camp. Vision, Graphics, and Image Processing 36, 139–161.Google Scholar
  15. [15]
    J. Louchet (2000). From Hough to Darwin: An Individual Evolutionary Strategy Applied to Artificial Vision, Lecture Notes in Comp. Sci. (1829): Artificial Evolution, Springer.Google Scholar
  16. [16]
    R.A. McLaughlin (1998). Randomized Hough Transform: Improved ellipse detection with comparison, Pattern Rec. Letters 19(3-4) 299–305.CrossRefMATHGoogle Scholar
  17. [17]
    D.C.W. Pao, H.F. Li, R. Jayakumar (1992). Shapes Recognition Using Straight Line Hough Tramform: Theory and Generalization, IEEE Trans. PAMI 14(11) 1076–1089.CrossRefGoogle Scholar
  18. [18]
    A.S. Rojer, E.L. Scwartz (1992). A Quotient Space Hough Transform for Space-Variant Visual Attention, Neural Networks for Vision and Image Processing, MIT Press.Google Scholar
  19. (19).
    P. Toft (1996). The Radon Transform, Theory and Implementation, PhD Thesis, TU of Denmark.Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • M. Köppen
  • A. Soria-Frisch
  • R. Vicente-García
    • 1
  1. 1.Fraunhofer IPK, Dept. Pattern RecognitionBerlinGermany

Personalised recommendations