Skip to main content

How Certain Characteristics of Cortical Frequency Representation May Influence our Perception of Sounds

  • Conference paper
Artificial Neural Nets and Genetic Algorithms
  • 289 Accesses

Abstract

We present two attractor neural network (ANN) [1] models introduced in [2, 3] to show how two particular characteristics of the sound frequency representation in the auditory cortex may influence the way in which we process sounds and sound sequences. In particular, we consider neurophysiologically recognized isofrequency stripes and different amount of cortical surface area devoted to low versus high frequencies. Although we apply these models to explain several phenomena in the perception of music, they can be generalized to other sounds as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.J. Amit, Modeling Brain Function. The World of Attractor Neural Networks, Cambridge: Cambridge University Press, 1989.

    Book  MATH  Google Scholar 

  2. L. Beňušková, “Modelling the effect of the missing fundamental with an attractor neural network” Network, vol. 5, pp. 333–349, 1994.

    Article  MATH  Google Scholar 

  3. L. Beňušková, “Modelling transpositional invariancy of melody recognition with an attractor neural network”, Network, vol. 6, pp. 313–331, 1995.

    Article  MATH  Google Scholar 

  4. R.A. Reale and T.J. Imig, “Tonotopic organization in auditory cortex of the cat”, J. Compo Neurol., vol. 192, pp. 265–292, 1980.

    Article  Google Scholar 

  5. A. Morel and J.H. Kaas, “Subdivisions and connections of auditory cortex in owl monkeys”, J. Comp. Neurol., vol. 318, pp. 27–63, 1992.

    Article  Google Scholar 

  6. J.L. Lauter, P. Herscovitch, C. Formby and M.E. Raichle, “Tonotopic organization in human auditory cortex revelaed by positron emission tomography”, Hearing Res., vol. 20, pp. 199–205, 1985.

    Article  Google Scholar 

  7. A. Špelda, Úvod do akustiky pro hudebníky, Praha: Státní nakladatelství krásné literatury, hudby a umění, 1958.

    Google Scholar 

  8. W.M. Hartmann W M, “Pitch perception and the segregation and the integration of auditory entities”, Auditory Function. Neurobiological Bases of Hearing, G.M. Edelman, W. Einar Gall and W.M. Cowan (eds), New York: John Wiley and Sons, 19

    Google Scholar 

  9. A.J.M. Houtsma and J.L. Goldstein, “The central pitch origin of the pitch of complex tones: evidence from musical interval recognition”, J. Acoust. Soc. Amer., vol. 51, pp.520–529, 1972.

    Article  Google Scholar 

  10. J.L. Goldstein, A. Gerson, P. Srulovicz and M. Furst, “Verification of the optimal probabilistic basis of aural processing in pitch of complex tones”, J. Acoust. Soc. Amer., vol. 63, pp. 486–497, 1978.

    Article  Google Scholar 

  11. A.J.M. Houtsma and J. Smurzynski, “Pitch identification and discrimination for complex tones with many harmonics”, J. Acoust. Soc. Amer., vol 87, pp. 304–310, 1990.

    Article  Google Scholar 

  12. D.J. Amit, H. Gutfreund and H. Sompolinsky, “Information storage in neural networks with low levels of activity”, Phys.Rev. A, vol. 35, pp. 2293–2303, 1987.

    Article  MathSciNet  Google Scholar 

  13. J.J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities”, Proc. Natl. Acad. Sci. USA, vol. 79, pp. 2554–2558, 1982.

    MathSciNet  Google Scholar 

  14. P. Peretto and J.-J. Niez J.-J., “Stochastic dynamics of neural networks”,IEEE Trans. Syst. Man Cybern., vol. 16, pp. 73–83, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  15. J.C. Bartlett and W.J. Dowling, “Recognition of transposed melodies: a key-distance effect in developmental perspective”, J. Exp. Psychol.: Hum. Percept. Perform., vol. 6, pp. 501–515, 1980.

    Article  Google Scholar 

  16. E.C. Carterrete, D.V. Kohl and M.A. Pitt, “Similarities among transformed melodies: the abstraction of invariants”, Music Perception, vol. 3, 393–410, 1986.

    Article  Google Scholar 

  17. H. Sompolinsky and I. Kanter, “Temporal association in a symetric neural networks”, Phys. Rev. Lett., vol. 57, pp. 2861–2864, 1986.

    Article  Google Scholar 

  18. H. Gutfreund and M. Mezard, “Processing temporal sequences in neural networks”, Phys. Rev. Lett., vol. 61, pp. 235–238, 1988.

    Article  MathSciNet  Google Scholar 

  19. V.S. Dotsenko, “Neural networks: translation-, rotation-and scale-invariant patterns recognition”, J. Phys. A: Math. Gen., vol. 21, pp. L783–L787, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  20. V. Černý, “Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm”, J. Optim. Appl., vol. 45, pp. 41–51, 1985.

    Article  MATH  Google Scholar 

  21. P. Belin, R.J. Zatorre, P. Lafaille, P. Ahad and B. Pike, “Voice-selective areas in human auditory cortex”, Nature, vol. 403, pp. 309–312, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this paper

Cite this paper

Beňušková, L. (2001). How Certain Characteristics of Cortical Frequency Representation May Influence our Perception of Sounds. In: Kůrková, V., Neruda, R., Kárný, M., Steele, N.C. (eds) Artificial Neural Nets and Genetic Algorithms. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6230-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6230-9_31

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83651-4

  • Online ISBN: 978-3-7091-6230-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics