Skip to main content

An Immunological Approach to Initialize Feedforward Neural Network Weights

  • Conference paper

Abstract

The initial weight vector to be used in supervised learning for multilayer feedforward neural networks has a strong influence in the learning speed and in the quality of the solution obtained after convergence. An inadequate initial choice may cause the training process to get stuck in a poor local minimum, or to face abnormal numerical problems. In this paper, we propose a biologically inspired method based on artificial immune systems. This new strategy is applied to several benchmark and real-world problems, and its performance is compared to that produced by other approaches already suggested in the literature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kolen, J. F. & Pollack, J. B.: Back Propagation is Sensitive to Initial Conditions, Technical Report TR 90-JK-BPSIC, 1990.

    Google Scholar 

  2. Shepherd, A. J.: Second-Order Methods for Neural Networks — Fast and Reliable Methods for Multi-Layer Perceptrons, Springer, 1997.

    Google Scholar 

  3. Hertz, J., Krogh, A. & Palmer, R.G.: Introduction to the Theory of Neural Computation. Addison-Wesley Publishing Company, 1991.

    Google Scholar 

  4. Janeway Jr., C. A & P. Travers: Immunobiology The Immune System in Health and Disease, garland Publishing Inc., N.Y., 2nd ed., 1994.

    Google Scholar 

  5. Haykin S.: Neural Networks — A Comprehensive Foundation, Prentice Hall, 2nd ed., 1999.

    Google Scholar 

  6. Kirkpatrick, S., Gelatt Jr., C. D. & Vecchi, M. P.: Optimization by Simulated Annealing, Science, 220(4598), 671–680, (1987).

    Google Scholar 

  7. Perelson, A S. & Oster, G. F.: Theoretical Studies of Clonal Selection: Minimal Antibody Repertoire Size and Reliability of Self-Nonself Discrimination, J. theor. Biol., 81, 645–670, (1979).

    Google Scholar 

  8. Smith, D. J., Forrest, S., Hightower, R. R. & Perelson, S. A.: Deriving Shape Space Parameters from Immunological Data, J. theor. Biol., 189, 141–150, (1997).

    Google Scholar 

  9. Boers, E. G. W. & Kuiper, H.: Biological Metaphors and the Design of Modular Artificial Neural Networks Master Thesis, Leiden University, Netherlands, (1992).

    Google Scholar 

  10. Nguyen, D. & Widrow, B.: Improving the Learning Speed of Two-Layer Neural Networks by Choosing Initial Values of the Adaptive Weights, Proc. IJCN’90, 3, 21–26, (1990). Master Thesis, Leiden University, Netherlands, (1992).

    Google Scholar 

  11. Kim, Y. K. & Ra, J. B.: Weight Value Initialization for Improving Training Speed in the Backpropagation Network, Proc. ofIJCNN’91, 3, 2396–2401, (1991).

    Google Scholar 

  12. Lehtokangas, M., Saarinen, J., Kaski, K. & Huuhtanen, P.: Initializing Weights of a Multilayer Perceptron by Using the Orthogonal Least Squares Algorithm, NEUROCOM, 7,982–999, (1995).

    Google Scholar 

  13. De Castro, L. N. & Von Zuben F. J.: A Hybrid Paradigm for Weight Initialization in Supervised Feedforward Neural Network Learning, Proc. ICS’98, Workshop on Artificial Intelligence, 30–37, (1998).

    Google Scholar 

  14. Barreiros, J. A. L., Ribeiro, R. R. P., Affonso, C. M. & Santos, E. P.:Estabilizador de Sistemas de Potenciě Adaptativo com Pré-Programação de Parâmetros e Rede Neural Artificial, LAC: EGT, 538–542, (1997).

    Google Scholar 

  15. DeCastro, L. N., Von Zuben, F. J. & Martins, W.: Hybrid and Constructive Neural Networks Applied to a Prediction Problem in Agriculture. Proc. of IJCNN’98 3,1932–1936, (1998).

    Google Scholar 

  16. ftp://ftp.ics.uci.edu/pub/machine-learning-data bases

    Google Scholar 

  17. Fahlman, S. E.: An Empirical Study of Learning Speed in Back-Propagation Networks, Tech. Rep., CMU-CS-88-162, Carnegie Mellon University, Pittsburg, (1988).

    Google Scholar 

  18. Moller, M. F.: A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning, Neural Networks, 6, 525–533, (dy1993).

    Google Scholar 

  19. Pearlmutter, B. A: Fast Exact Calculation by the Hessian, NEUROCOM, 6,147–160, (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this paper

Cite this paper

de Castro, L.N., Von Zuben, F.J. (2001). An Immunological Approach to Initialize Feedforward Neural Network Weights. In: Kůrková, V., Neruda, R., Kárný, M., Steele, N.C. (eds) Artificial Neural Nets and Genetic Algorithms. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6230-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6230-9_30

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83651-4

  • Online ISBN: 978-3-7091-6230-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics