Skip to main content

Modular Clustering by Radial Basis Function Network for Complexity Reduction in System Modeling

  • Conference paper
Artificial Neural Nets and Genetic Algorithms

Abstract

Clustering is one of the dominant techniques of exploratory data analysis and data driven dynamic system modeling. In the context of model complexity, one of the powerful clustering methods is the method of orthogonal least squares (OLS) applied to radial basis functions (RBF) network. However, conventional way of utilization of OLS learning for a set of complex data is not desirable even though the learning process might be feasible for the amount of data at hand. This is due to the fact that some singular associations in the data can easily obscure many interrelations of interest among the data and also because of this, the rest of the associations for identification can heavily be limited. Therefore, as novel RBF clustering for system modeling, a set of time-series data is divided into several subsets as modules so that each subset is subjected to clustering separately. The dominant clusters in each subset are accumulated throughout the modular processing of total data set. The newly formed reduced data set which comprises the patterns from the clusters of the subsets, is subjected to final RBF network clustering by OLS for hierarchical cluster gradation from the subsets to identify the input-output model being searched for. In this way RBF clustering is accomplished substantially fast and at the same time effective reduction in complexity is obtained. The paper deals with the details of the novel RBF clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bezdek, J.C., Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum, New York (1981)

    Book  MATH  Google Scholar 

  2. Uykan Z. et al.:Analysis of Input-Output Clustering for Determining Centers of RBFN, IEEE Trans. on Neural Networks, Vol.11 No.4 (2000)

    Google Scholar 

  3. Chen S C.F.N. Cowan P.M. Grant, Orthogonal Least Squares Algorithm for Radial Basis Function Networks, IEEE Trans. on Neural Networks, Vol.2, No.2 (1991)

    Google Scholar 

  4. Jang J.-S R. Sun T.C.: Functional Equivalence Between Radial Base Function Networks and Fuzzy Inference Systems, IEEE Trans. on Neural Networks, Vol.4, No.1, (1993)

    Google Scholar 

  5. Hunt K.J. Haas R. Murray-Smith R.M.: Extending the Functional Equivalence of Radial basis Function Networks and Fuzzy Inference Systems, IEEE Trans. on Neural networks, Vol.7, No.3 (1996)

    Google Scholar 

  6. Ciftcioglu Ö., Wavelet Transform by Soft Computing in ‘Advances in Soft Computing’ by R. John R. Birkenhead (Eds.), Physica-Verlag,, Heidelberg, New York, (2000)

    Google Scholar 

  7. Mallat S. Wavelet Tour of Signal Processing, Academic Press, San Diego, London (1999)

    Google Scholar 

  8. Daubechies I, Ten Lectures on Wavelets, CBMS-NSF regional conference series in applied mathematics Vol.61, SIAM (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this paper

Cite this paper

Ciftcioglu, Ö., Sariyildiz, S. (2001). Modular Clustering by Radial Basis Function Network for Complexity Reduction in System Modeling. In: Kůrková, V., Neruda, R., Kárný, M., Steele, N.C. (eds) Artificial Neural Nets and Genetic Algorithms. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6230-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6230-9_28

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83651-4

  • Online ISBN: 978-3-7091-6230-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics