Data Mining and Automation of Experts Decision Process Applied to Machine Design for Furniture Production

  • G. Klene
  • A. Grauel
  • H. J. Convey
  • A. J. Hartley
Conference paper


A software concept based on data mining and knowledge discovery for a multi-spindle drilling gear configuration and optimisation applied to a machine used in furniture production process is proposed. The objective is to find the minimum number of supports and the optimised configuration of the multi-spindle drilling gears. Intelligent analysis of input data and an automated system covering the human design procedure are applied to configure multi-drilling gears. The input data presented as digitalised customer engineering drawings and furthermore technology data describing the basic constraints of the machine construction are presented. Moreover the transfer of acquired manual design experience from a human expert to a software strategy to solve the multi-criteria optimisation problem is shown.


Work Piece Human Expert Large Board Machine Construction Generalize Primitive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Kiene, G., Grauel, A., Convey, H. J., Hartley, A. J.: Optimisation under Constraints for Multi-Drilling Head Techniques. Optimisation under Constraints for Multi-Drilling Head Techniques 1526 (ISBN 3-18-091526-9), VDI Verlag,. Düsseldorf, pp. 353–358, 2000.Google Scholar
  2. [2]
    Kiene, G., Grauel, A., Convey, H. J., Hartley, A. J.: Intelligent Multi-Drilling Gear Optimisation for Industrial Automation Proc. World Conference on Intelligent Systems for Industrial Automation (ISBN 3-933609-07-0), WCIS 2000, b-Quadrat Verlag, Kaufering, pp. 14–19,2000.Google Scholar
  3. [3]
    Kiene, G., Grauel, A., Convey, H. J., Hartley, A. J.: Intelligent Data Analysis for Design of Multi-Drilling Gear Machines, Proc. European Symposium on Intelligent Techniques (ISBN 3-89653-797-0), ESIT2000, Fotodruck Mainz GmbH, Aachen, pp. 257–262,2000.Google Scholar
  4. [4]
    Kiene, G., Grauel, A., Convey, H. J., Hartley, A. J.: Automated Multi-Drilling Gear Design in the Framework of Computational Intelligence Proc. 4th Portuguese Conference on Automatie Control (ISBN 972-98603-0-0), Controlo’ 2000, Igreja de Oliveira, Guimaraes-Portugal, pp. 482–486, 2000.Google Scholar
  5. [5]
    Grauel, A., Fuzzy-Logik: Einführung in die Grundlagen mit Anwendungen, B.I.-Wissenschaftsverlag, Mannheim, 1995.Google Scholar
  6. [6]
    Grauel, A., Kiene, G., Ludwig, L. A. ECG Diagnostics by Fuzzy Decision Making, Int. Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 6,2. pp. 201–210, 1998.CrossRefMATHGoogle Scholar
  7. [7]
    Grauel, A., “Fuzzy-Logik”, chapter 5.8 in Taschenbuch der Mathematik, 4th ed., eds. I. N. Bronstein, K. A. Semendjajew, G. Musiol and H. Mühlig, pp. 719–739. Verlag Harri Deutsch, Frankfurt, 1999.Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • G. Klene
  • A. Grauel
    • 1
  • H. J. Convey
  • A. J. Hartley
    • 2
  1. 1.Department MathematicsUniversity of Paderborn, Soest Campus, Unit 16SoestGermany
  2. 2.Faculty of Technology, Technology Development UnitBolton Institute of Higher Education, Deane CampusBoltonEngland

Personalised recommendations