Fast Multiresolution Extraction of Multiple Transparent Isosurfaces

  • Thomas Gerstner
Part of the Eurographics book series (EUROGRAPH)


In this paper, we present a multiresolution algorithm which is capable to render multiple transparent isosurfaces under real-time constraints. To this end, the underlying 3D data set is covered with a hierarchical tetrahedral grid. The multiresolution extraction algorithm is then based on an adaptive traversal of the tetrahedral grid with the help of error indicators. The display of transparent isosurfaces using alpha blending requires a back-to-front rendering of the isosurface triangles. This is achieved by a hierarchical sorting procedure of the tetrahedra and the hierarchical computation of data gradients. We will also comment on the automated selection of suitable isovalues for visualization applications.


Error Indicator Data Gradient Tree Traversal Marching Cube IEEE Visualization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Bajaj, V. Pascucci, and D. Schikore. Accelerated Isocontouring of Scalar Fields. In C. Bajaj, editor, Data Visualization Techniques. John Wiley and Sons, 1998.Google Scholar
  2. 2.
    P. Cignoni, L. De Floriani, C. Montani, E. Puppo, and R. Scopigno. Multiresolution Representation and Visualization of Volume Data. IEEE Transactions on Visualization and Computer Graphics, 3(4):352–369, 1997.CrossRefGoogle Scholar
  3. 3.
    F. Dong, M. Krokos, and G. Clapworthy. Fast Volume Rendering and Data Classification using Multiresolution Min-Max Octrees. Computer Graphics Forum, 19(3):359–367, 2000.CrossRefGoogle Scholar
  4. 4.
    T. Ertl, R. Westermann, and R. Grosso. Multiresolution and Hierarchical Methods for the Visualization of Volume Data. Future Generation Computer Systems, 15(1):31–42, 1999.CrossRefGoogle Scholar
  5. 5.
    T. Gerstner and R. Pajarola. Topology Preserving and Controlled Topology Simplifying Multiresolution Isosurface Extraction. In Proc. IEEE Visualization 2000, pages 259–266. IEEE Computer Society Press, 2000.Google Scholar
  6. 6.
    T. Gerstner and M. Rumpf. Multiresolutional Parallel Isosurface Extraction based on Tetrahedral Bisection. In M. Chen, A. Kaufman, and R. Yagel, editors, Volume Graphics, pages 267–278. Springer, 2000.Google Scholar
  7. 7.
    T. Gerstner, M. Rumpf, and U. Weikard. Error Indicators for Multilevel Visualization and Computing on Nested Grids. Computers&Graphics, 24(3):363–373, 2000.Google Scholar
  8. 8.
    R. Grosso, C. Lürig, and T. Ertl. The Multilevel Finite Element Method for Adaptive Mesh Optimization and Visualization of Volume Data. In Proc. IEEE Visualization’ 97, pages 387-394. IEEE Computer Society Press, 1997.Google Scholar
  9. 9.
    B. Guo. A Multiscale Model for Structure-based Volume Rendering. IEEE Transactions on Visualization and Computer Graphics, 1(4):291–301, 1995.CrossRefGoogle Scholar
  10. 10.
    D. Holliday and G. Nielson. Progressive Volume Model for Rectilinear Data using Tetrahedral Coons Volumes. In W. de Leeuw and R. van Liere, editors, Data Visualization 2000, pages 83–92. Springer, 2000.Google Scholar
  11. 11.
    U.E. LaMar, B. Hamann, and K. Joy. Multiresolution Techniques for Interactive Texture-based Volume Visualization. In Proc. IEEE Visualization’ 99, pages 355–362. IEEE Press, 1999.Google Scholar
  12. 12.
    D. Laur and P. Hanrahan. Hierarchical Splatting: A Progressive Refinement Algorithm for Volume Rendering. Computer Graphics (SIGGRAPH’ 91 Proc), pages 285–288, 1991.Google Scholar
  13. 13.
    L. Lippert and M. Gross. Fast Wavelet based Volume Rendering by Accumulation of Transparent Texture Maps. Computer Graphics Forum, 14(3):431–444, 1995.CrossRefGoogle Scholar
  14. 14.
    Y. Livnat, H. Shen, and C. Johnson. A Near Optimal Isosurface Extraction Algorithm using the Span Space. IEEE Trans. on Visualization and Computer Graphics, 2(1):73–83, 1996.CrossRefGoogle Scholar
  15. 15.
    W. Lorensen and H. Cline. Marching Cubes: A High Resolution 3D Surface Construction Algorithm. Computer Graphics, 21(4):163–169, 1987.CrossRefGoogle Scholar
  16. 16.
    J. Maubach. Local Bisection Refinement for n-simplicial Grids generated by Reflection. SIAM J. Sci. Comp., 16:210–227, 1995.MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    M. Meissner, J. Huang, D. Bartz, K. Mueller, and R. Crawfis. A Practical Evaluation of Popular Volume Rendering Algorithms. In Proc. Volume Visualization 2000, pages 81–91. ACM Press, 2000.Google Scholar
  18. 18.
    S. Muraki. Approximation and Rendering of Volume Data using Wavelet Transforms. Computer Graphics and Applications, 13(4):50–56, 1993.CrossRefGoogle Scholar
  19. 19.
    M. Ohlberger and M. Rumpf. Adaptive Projection Methods in Multiresolutional Scientific Visualization. IEEE Trans, on Visualization and Computer Graphics, 4(4):74–94, 1998.CrossRefGoogle Scholar
  20. 20.
    V Pascucci and C. Bajaj. Time Critical Isosurface Refinement and Smoothing. In Proc. Volume Visualization 2000, pages 33–42. ACM Press, 2000.Google Scholar
  21. 21.
    B. Payne and A. Toga. Surface Mapping Brain Function on 3D Models. IEEE Computer Graphics and Applications, 10(5):33–41, 1990.CrossRefGoogle Scholar
  22. 22.
    H. Pfister (org.), B. Lorensen, C. Bajaj, G. Kindlmann, and W. Schroeder. The Transfer Function Bake-Off. Panel session at IEEE Visualization’ 00, 2000.Google Scholar
  23. 23.
    M. Rivara and C. Levin. A 3D Refinement Algorithm suitable for Adaptive and Multi-Grid Techniques. Comm. Appl. Num. Meth., 8:281–290, 1992.MATHCrossRefGoogle Scholar
  24. 24.
    R. Shekhar, E. Fayyad, R. Yagel, and J. Cornhill. Octree-based Decimation of Marching Cubes Surfaces. In Proc. IEEE Visualization’ 96, pages 335–344. IEEE Press, 1996.Google Scholar
  25. 25.
    O. Staadt, M. Gross, and R. Weber. Multiresolution Compression and Reconstruction. In Proc. IEEE Visualization’ 97, pages 337–364. IEEE Computer Society Press, 1997.Google Scholar
  26. 26.
    P. Sutton, C. Hansen, H.-W Shen, and D. Schikore. A Case Study of Isosurface Extraction Algorithm Performance. In W. de Leeuw and R. van Liere, editors, Data Visualization 2000, pages 259–268. Springer, 2000.Google Scholar
  27. 27.
    M. Weiler, R. Westermann, C. Hansen, K. Zimmerman, and T Ertl. Level-of-Detail Volume Rendering via 3D Textures. In Proc. Volume Vis. 2000, pages 7–13. ACM Press, 2000.Google Scholar
  28. 28.
    R. Westermann. A Multiresolution Framework for Volume Rendering. In Proc. Volume Visualization 94, pages 51–57. ACM Press, 1994.Google Scholar
  29. 29.
    R. Westermann, L. Kobbelt, and T. Ertl. Real-Time Exploration of Regular Volume Data by Adaptive Reconstruction of Isosurfaces. The Visual Computer, 15:100–111, 1999.CrossRefGoogle Scholar
  30. 30.
    J. Wilhelms and A. Van Gelder. Octrees for Faster Isosurface Generation. ACM Transactions on Graphics, 11(3):201–227, 1992.MATHCrossRefGoogle Scholar
  31. 31.
    Y. Yang, F. Lin, and H. Seah. Fast Multi-Resolution Volume Rendering. In M. Chen, A. Kaufman, and R. Yagel, editors, Volume Graphics, pages 185–197. Springer, 2000.Google Scholar
  32. 32.
    Y. Zhou, B. Chen, and A. Kaufman. Multiresolution Tetrahedral Framework for Visualizing Volume Data. In Proc. IEEE Visualization’ 97, pages 135–142. IEEE Press, 1997.Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Thomas Gerstner
    • 1
  1. 1.Department for Applied MathematicsUniversity of BonnBonnGermany

Personalised recommendations