Advertisement

Extraction of Crack-free Isosurfaces from Adaptive Mesh Refinement Data

  • Guther H. Weber
  • Oliver Kreylos
  • Terry J. Ligocki
  • John M. Shalf
  • Hans Hagen
  • Bernd Hamann
  • Kenneth I. Joy
Part of the Eurographics book series (EUROGRAPH)

Abstract

Adaptive mesh refinement (AMR) is a numerical simulation technique used in computational fluid dynamics (CFD). It permits the efficient simulation of phenomena characterized by substantially varying scales in complexity of local behavior of certain variables. By using a set of nested grids at different resolutions, AMR combines the simplicity of structured rectilinear grids with the possibility to adapt to local changes in complexity and spatial resolution. Hierarchical representations of scientific data pose challenges when isosurfaces are extracted. Cracks can arise at the boundaries between regions represented at different resolutions. We present a method for the extraction of isosurfaces from AMR data that avoids cracks at the boundaries between levels of different resolution.

Keywords

Coarse Grid Fine Grid Triangular Prism Adaptive Mesh Refinement Hexahedral Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    AVS5. Product of Advanced Visual Systems, further details can be found at http://www.avs.com/products/AVS5/avs5.htm.
  2. [2]
    Marsha Berger and Phillip Colella. Local adaptive mesh refinement for shock hydrodynamics. Journal of Computational Physics, 82:64–84, May 1989. Lawrence Livermore National Laboratory, Technical Report No. UCRL-97196.MATHCrossRefGoogle Scholar
  3. [3]
    Marsha Berger and Joseph Oliger. Adaptive mesh refinement for hyperbolic partial differential equations. Journal of Computational Physics, 53:484–512, March 1984.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Greg L. Bryan. Fluids in the universe: Adaptive mesh refinement in cosmology. Computing in Science and Engineering, 1(2):46–53, March/April 1999.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Allen Van Gelder and Jane Wilhelms. Topological considerations in isosurface generation. ACM Transactions on Graphics, 13(4):337–375, October 1994.CrossRefGoogle Scholar
  6. [6]
    Markus B. Gross, Oliver G. Staadt, and Roger Gatti. Efficient triangular surface approximations using wavelets and quadtree data structures. IEEE Transactions on Visualization and Computer Graphics, 2(2):130–143, June 1996.CrossRefGoogle Scholar
  7. [7]
    Interactive Data Language (IDL). Product of Research Systems, Inc., see http://www.rsine.com/idl/index.cfm for details.
  8. [8]
    William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3D surface construction algorithm. Computer Graphics (SIGGRAPH’ 87 Proceedings), 21(4):163–169, July 1987.CrossRefGoogle Scholar
  9. [9]
    Kwan-Liu Ma. Parallel rendering of 3D AMR data on the SGI/Cray T3E. In: Proceedings of Frontiers’ 99 the Seventh Symposium on the Frontiers of Massively Parallel Computation, pages 138–145, IEEE Computer Society Press, Los Alamitos, California, February 1999.CrossRefGoogle Scholar
  10. [10]
    Nelson L. Max. Sorting for polyhedron compositing. In: Hans Hagen, Heinrich Müller, and Gregory B. Nielson, editors, Focus on Scientific Visualization, pages 259–268. Springer-Verlag, New York, New York, 1993.CrossRefGoogle Scholar
  11. [11]
    Gregory M. Nielson and Bernd Hamann. The asymptotic decider: Removing the ambiguity in marching cubes. In: Gregory M. Nielson and Larry J. Rosenblum, editors, IEEE Visualization’ 91, pages 83–91, IEEE Computer Society Press, Los Alamitos, California, 1991.CrossRefGoogle Scholar
  12. [12]
    Michael L. Norman, John M. Shalf, Stuart Levy, and Greg Daues. Diving deep: Data management and visualization strategies for adaptive mesh refinement simulations. Computing in Science and Engineering, 1(4):36–47, July/August 1999.CrossRefGoogle Scholar
  13. [13]
    William J. Schroeder, Kenneth M. Martin, and William E. Lorensen. The Visualization Toolkit, second edition, 1998. Prentice-Hall, Upper Saddle River, New Jersey.Google Scholar
  14. [14]
    Raj Shekhar, Elias Fayyad, Roni Yagel, and J. Fredrick Cornhill. Octree-based decimation of marching cubes surface. In: Roni Yagel and Gregory M. Nielson, editors, IEEE Visualization’ 96, pages 335–342, 499, IEEE Computer Society Press, Los Alamitos, California, October 1998.Google Scholar
  15. [15]
    Rüdiger Westermann, Leif Kobbelt, and Thomas Ertl. Real-time exploration of regular volume data by adaptive reconstruction of iso-surfaces. The Visual Computer, 15(2):100–111, 1999.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Guther H. Weber
    • 1
    • 2
    • 3
  • Oliver Kreylos
    • 1
    • 2
  • Terry J. Ligocki
    • 3
  • John M. Shalf
    • 3
    • 4
  • Hans Hagen
    • 2
  • Bernd Hamann
    • 1
    • 3
  • Kenneth I. Joy
    • 1
  1. 1.Center for Image Processing and Integrated Computing (CIPIC), Department of Computer ScienceUniversity of CaliforniaDavisUSA
  2. 2.Department of Computer ScienceUniversity of KaiserslauternGermany
  3. 3.National Energy Research Scientific Computing Center (NERSC)Lawrence Berkeley National LaboratoryBerkeleyUSA
  4. 4.National Center for Supercomputing Applications (NCSA)University of IllinoisUrbana-ChampaignUSA

Personalised recommendations