Adaptive Volume Rendering using Fuzzy Logic Control

  • Xinyue Li
  • Han-Wei Shen
Part of the Eurographics book series (EUROGRAPH)


This paper presents an automatic error tolerance specification system to control the performance of hierarchical volume rendering. Rather than requiring the user to provide an explicit error tolerance numerically, we let the user to specify only the target rendering speed. Our system can then calculate an appropriate error tolerance adaptively to satisfy the user’s performance goal. The system is realized using fuzzy logic control, which enables run-time adaptation based on iterative feedback control and knowledge acquired from past experience. We describe the process of constructing the fuzzy logic control system, and show that the system can successfully steer the performance of volume rendering.


Membership Function Frame Rate Volume Rendering Error Tolerance Fuzzy Logic Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Levoy. Efficient ray tracing of volume data. ACM Transactions on Graphics, 9(3):245–261, 1990.MATHCrossRefGoogle Scholar
  2. 2.
    J. Danskin and P. Hanrahan. Fast algorithms for volume ray tracing. In Proceedings of 1992 Workshop on Volume Visualization, pages 91–99. ACM SIGGRAPH, 1992.Google Scholar
  3. 3.
    J. Wilhelms and A. Van Gelder. Multi-dimensional trees for controlled volume rendering and compression. In Proceedings of 1994 Symposium on Volume Visualization, pages 27–34. ACM SIGGRAPH, 1994.Google Scholar
  4. 4.
    E. LaMar, B. Hamann, and K. Joy. Multiresolution techniques for interactive texture-based volume visualization. In Proceedings of Visualization’ 99, pages 355–361. IEEE Computer Society Press, Los Alamitos,CA, 1999.Google Scholar
  5. 5.
    M. Weiler, R. Westermann, C. Hansen, K. Zimmerman, and T. Ertl. Level-of-detail volume rendering via 3d textures. In Proceedings of 2000 Symposium on Volume Visualization, pages 7–13. ACM SIGGRAPH, 2000.Google Scholar
  6. 6.
    H.-W. Shen, L.J. Chiang, and K.L. Ma. A fast volume rendering algorithm for time-varying field using a time-space partitioning (tsp) tree. In Proceedings of Visualization’ 99. IEEE Computer Society Press, Los Alamitos, CA, 1999.Google Scholar
  7. 7.
    D. Ellsworth, L. Chiang, and H.-W. Shen. Accelerating time-varying hardware volume rendering using tsp trees and color-based error metrics. In Proceedings of 2000 Symposium on Volume Visualization. ACM SIGGRAPH, 2000.Google Scholar
  8. 8.
    L.A. Zadeh. The calculus of fuzzy if/then rules. AI Expert, 7:23–27, March 1992.Google Scholar
  9. 9.
    L.A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    D. Laur and P. Hanrahan. Hierarchical splating: A progressive refinement algorithm for volume rendering. In Proceedings of SIGGRAPH 91, pages 285–287. ACM SIGGRAPH, 1991.Google Scholar
  11. 11.
    K. Tanaka. An introduction to fuzzy logic control for practical applications. Springer New York, 1997.Google Scholar
  12. 12.
    R. Yager and D. Filev. Essentials of fuzzy modeling and control. J. Wiley New York, 1994.Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Xinyue Li
    • 1
  • Han-Wei Shen
    • 1
  1. 1.Department of Computer and Information ScienceThe Ohio State University ColumbusOhioUSA

Personalised recommendations