Advertisement

Volume Rendering Data with Uncertainty Information

  • Suzana Djurcilov
  • Kwansik Kim
  • Pierre F. J. Lermusiaux
  • Alex Pang
Part of the Eurographics book series (EUROGRAPH)

Abstract

This paper explores two general methods for incorporating volumetric uncertainty information in direct volume rendering. The goal is to produce volume rendered images that depict regions of high (or low) uncertainty in the data. The first method involves incorporating the uncertainty information directly into the volume rendering equation. The second method involves post-processing information of volume rendered images to composite uncertainty information. We present some initial findings on what mappings provide qualitatively satisfactory results and what mappings do not. Results are considered satisfactory if the user can identify regions of high or low uncertainty in the rendered image. We also discuss the advantages and disadvantages of both approaches.

Keywords

Transfer Function High Uncertainty Volume Rendering Uncertainty Information Direct Volume Rendering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrej Cedilnik and Penny Rheingans. Procedural annotation of uncertain information. In Proceedings of Visualization 00, pages 77–84. IEEE Computer Society Press, 2000.Google Scholar
  2. 2.
    Suzana Djurcilov and Alex Pang. Visualizing sparse gridded datasets. IEEE Computer Graphics and Applications, 20(5):52–57, September 2000.CrossRefGoogle Scholar
  3. 3.
    Victoria Interrante. Harnessing natural textures for multivariate visualization. IEEE Computer Graphics and Applications, 20(6):6–11, November/December 2000.CrossRefGoogle Scholar
  4. 4.
    G. Kindlmann and J.W. Durkin. Semi-automatic generation of transfer functions for direct volume rendering. In IEEE Symposium on Volume Visualization, pages 79–86, 170. IEEE, 1998.Google Scholar
  5. 5.
    P.F.J. Lermusiaux. Data assimilation via error subspace statistical estimation, Part ii: Middle Atlantic Bight shelfbreak front simulations and ESSE validation. Monthly Weather Review, 127(7):1408–1432, 1999.CrossRefGoogle Scholar
  6. 6.
    E. Levy, G. Gawarkiewicz, and F. Bahr. The ONR shelfbreak PRIMER experiment: shelfbreak frontal dynamics in the Middle Atlantic Bight. URL: http://matisse.whoi.edu/primerxd, 1999.
  7. 7.
    A. Pang, C.M. Wittenbrink, and S. K. Lodha. Approaches to uncertainty visualization. The Visual Computer, 13(8):370–390, 1997.CrossRefGoogle Scholar
  8. 8.
    A.R. Robinson. Physical processes, field estimation and an approach to interdisciplinary ocean modeling. Earth-Science Review, 40:3–54, 1996.CrossRefGoogle Scholar
  9. 9.
    A. Tarantola. Inverse Problem Theory. Methods for Data Fitting and Model Parameter Estimation. Elsevier Science Publishers, 1987.Google Scholar
  10. 10.
    Craig M. Wittenbrink. IFS fractal interpolation for 2D and 3D visualization. In IEEE Visualization’ 95, pages 77–84, Atlanta, GA, November 1995. IEEE.Google Scholar
  11. 11.
    Craig M. Wittenbrink, Alex T. Pang, and Suresh K. Lodha. Glyphs for visualizing uncertainty in vector fields. IEEE Transactions on Visualization and Computer Graphics, 2(3):266–279, September 1996. Short version in SPIE Proceeding on Visual Data Exploration and Analysis, pages 87-100, 1995.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Suzana Djurcilov
    • 1
  • Kwansik Kim
    • 1
  • Pierre F. J. Lermusiaux
    • 2
  • Alex Pang
    • 1
  1. 1.Computer Science DepartmentUCSCUSA
  2. 2.Division of Engineering and Applied SciencesHarvard UniversityUSA

Personalised recommendations