A Selective Refinement Approach for Computing the Distance Functions of Curves

  • Daniel E. Laney
  • Mark A. Duchaineau
  • Nelson L. Max
Conference paper
Part of the Eurographics book series (EUROGRAPH)


We present an adaptive signed distance transform algorithm for curves in the plane. A hierarchy of bounding boxes is required for the input curves. We demonstrate the algorithm on the isocontours of a turbulence simulation. The algorithm provides guaranteed error bounds with a selective refinement approach. The domain over which the signed distance function is desired is adaptively triangulated and piecewise discontinuous linear approximations are constructed within each triangle. The resulting transform performs work only were requested and does not rely on a preset sampling rate or other constraints.


Scalar Field Linear Approximation Distance Approximation Distance Node Active List 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    David E. Breen, Sean Mauch, and Ross T. Whitaker. 3d scan conversion of csg models into distance volumes. In Proc. 1998 Symposium on Volume Visualization, pages 7–14, Oct 1998.Google Scholar
  2. [2]
    Mark Duchaineau, Murray Wolinsky, David Sigeti, Mark C. Miller, Charles Aldrich, and Mark B. Mineev-Weinstein. Roaming terrain: real-time optimally adapting meshes. In Proc. Visualization, pages 81–88, 1997.Google Scholar
  3. [3]
    Sarah F. Frisken, Ronald N. Perry, Alyn P. Rockwood, and Thouis R. Jones. Adaptive sampled distance fields: a general representation of shape for computer graphics. In Proceedings of SIGGRAPH 2000, pages 249–254, July 2000.Google Scholar
  4. [4]
    Sarah F. Gibson. Using distance maps for accurate surface representation in sampled volumes. In Proceedings of the 1999 Conference on Volume Visualization, pages 23–30, Oct 1998.Google Scholar
  5. [5]
    H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuelzle. Surface reconstruction from unorganized points. In Proceedings of SIGGRAPH 92, pages 71–78, July 1992.Google Scholar
  6. [6]
    Peter Lindstrom, David Koller, William Ribarsky, Larry F. Hodges, Nick Faust, and Gregory A. Turner. Real-time, continuous level of detail rendering of height fields. In Proc. SIGGRAPH, pages 109–118, 1996.Google Scholar
  7. [7]
    A. A. Mirin, R. H. Cohen, B. C. Curtis, W. P. Dannevik, A. M. Dimits, M. A. Duchaineau, D. E. Eliason, D. R. Schikore, S. E. Anderson, D. H. Porter, P. R. Woodward, L. J. Shieh, and S. W. White. Very high resolution simulation of compressible turbulence on the IBM-SP system. In ACM, editor, Super Computing 1999, Oregon, pages 55-89 ACM Press and IEEE Computer Society Press, 1999.Google Scholar
  8. [8]
    V. Pascucci and C. L. Bajaj. time-critical isosurface refinement and smoothing. In Proceedings of Volume Visualization and Graphics Symposium 2000. IEEE and ACM/SIGGRAPH.Google Scholar
  9. [9]
    William J. Schroeder, William E. Lorensen, and Steve Linthicum. Implicit modelling of swept surfaces and volumes. In Proc. Visualization, pages 40–45, 1994.Google Scholar
  10. [10]
    J. A. Sethian. A fast marching level set method for monotonically advancing fronts. Proceedings of the National Academy of Science, 93:1591–1595, 1996.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    Ross T. Whitaker and David E. Breen. Level-set models for the deformation of solid objects. In Proc. of the 3rd International Workshop on Implicit Surfaces, pages 19–35, June 1998.Google Scholar
  12. [12]
    K. J. Zuiderveld, A. H. J. Konig, and M. A. Viergever. Acceleration of ray-casting using 3-d distance transforms. In Proc. of Visualization in Biomedical Computing, pages 324–335, 1992.Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Daniel E. Laney
    • 1
  • Mark A. Duchaineau
    • 2
  • Nelson L. Max
    • 1
    • 2
  1. 1.Department of Applied ScienceUniversity of California at DavisUSA
  2. 2.Lawrence Livermore National LaboratoryUSA

Personalised recommendations