Salient Representation of Volume Data

  • Jirí Hladůvka
  • Andreas König
  • Eduard Gröller
Part of the Eurographics book series (EUROGRAPH)


We introduce a novel method for identification of objects of interest in volume data. Our approach conveys the information contained in two essentially different concepts, the object’s boundaries and the narrow solid structures, in an easy and uniform way. The second order derivative operators in directions reaching minimal response are employed for this task. To show the superior performance of our method, we provide a comparison with its main competitor—surface extraction from areas of maximal gradient magnitude. We show that our approach provides the possibility to represent volume data by a subset of a nominal size.


Hessian Matrix Salience Function Gradient Magnitude Volume Visualization Direct Volume Rendering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever. Multiscale vessel enhancement filtering. Lecture Notes in Computer Science, 1496:130–137, 1998.CrossRefGoogle Scholar
  2. 2.
    J. Hlad?vka, A. König, and E. Gröller. Exploiting eigenvalues of the Hessian matrix for volume decimation. In Proceedings of 9th International Conference in Central Europe on Computer Graphics, Visualization, and Computer Vision (WSCG 2001), pages 124–129, 2001.Google Scholar
  3. 3.
    M. Hopf and T. Ertl. Accelerating 3D convolution using graphics hardware. In Proceedings of the 1999 IEEE Conference on Visualization (VIS-99), pages 471–474, 1999.Google Scholar
  4. 4.
    Intel Corporation. IPL-Intel Image Processing Library, v2.5, 2000.Google Scholar
  5. 5.
    B. Jahne. Digital Image Processing, chapter 5: Multiscale Representation, pages 121–138. Springer-Verlag Berlin Heidelberg, 4th edition, 1997.Google Scholar
  6. 6.
    G. Kindlmann and J. W. Durkin. Semi-automatic generation of transfer functions for direct volume rendering. In Proceedings of IEEE Volume Visualization, pages 79–86, 1998.Google Scholar
  7. 7.
    M. Levoy. Display of surfaces from volume data. IEEE Computer Graphics and Applications, 8(3):29–37, May 1988.CrossRefGoogle Scholar
  8. 8.
    T. Lindeberg. Edge detection and ridge detection with automatic scale selection. In Proceedings of IEEE Computer Vision and Pattern Recognition, pages 465–470, 1996.Google Scholar
  9. 9.
    L. Mroz, H. Häuser, and E. Gröller. Interactive high-quality maximum intensity projection. Computer Graphics Forum, 19(3):341–350, 2000.CrossRefGoogle Scholar
  10. 10.
    H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler. The VolumePro real-time ray-casting system. In Proceedings of ACM SIGGRAPH, pages 251–260, 1999.Google Scholar
  11. 11.
    H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels: Surface elements as rendering primitives. In SIGGRAPH 2000, Computer Graphics Proceedings, pages 335–342, 2000.Google Scholar
  12. 12.
    W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C, chapter 11: Eigensystems, pages 456–469. Cambridge University Press, 2 edition, 1992.Google Scholar
  13. 13.
    S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution point rendering system for large meshes. In SIGGRAPH 2000, Computer Graphics Proceedings, pages 343–352, 2000.Google Scholar
  14. 14.
    T. Saito. Real-time previewing for volume visualization. In Symposium on Volume Visualization, pages 79–106, 1994.Google Scholar
  15. 15.
    Y. Sato, S. Nakajima, N. Shiraga, H. Atsumi, S. Yoshida, T. Koller, G. Gerig, and R. Kikinis. 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Medical Image Analysis, 2(2):143–168, 1998.CrossRefGoogle Scholar
  16. 16.
    Y. Sato, C.-F. Westin, A. Bhalerao, S. Nakajima, N. Shiraga, S. Tamura, and R. Kikinis. Tissue classification based on 3D local intensity structures for volume rendering. IEEE Transactions on Visualization and Computer Graphics, 6(2):160–180, 2000.CrossRefGoogle Scholar
  17. 17.
    P. M. Sutton, C. D. Hansen, and H.-W. S. D. Schikore. A case study of isosurface extraction algorithm performance. In Data Visualization 2000, 2000.Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Jirí Hladůvka
    • 1
  • Andreas König
    • 1
  • Eduard Gröller
    • 1
  1. 1.Institute of Computer Graphics and AlgorithmsVienna University of TechnologyAustria

Personalised recommendations