Interactive and Multi-modal Visualization for Neuroendoscopic Interventions

  • Dirk Bartz
  • Wolfgang Straβer
  • Özlem Gürvit
  • Dirk Freudenstein
  • Martin Skalej
Part of the Eurographics book series (EUROGRAPH)


Based on the VIVENDI-framework for virtual endoscopy, we present a system for the interactive and multi-modal representation of important anatomical structures for neuroendoscopic interventions. A serious problem of neuroendoscopic interventions is the possibility of injuring a blood vessel while performing endoscopic surgery inside the human brain. Besides the sudden loss of optical visibility due to the red-out of the injured vessel, a potential lethal mass bleeding can be the fatal outcome of the intervention. To avoid accidental lesions, we represent the relevant information using multiple volumetric MRI-based representations of the respective organs. Keywords: Virtual Environments, Magnetic-Resonance-Imaging, MR Angiography, Virtual Neuroendoscopy, Computer Assisted Diagnosis.


Virtual Colonoscopy Virtual Endoscopy Marching Cube IEEE Visualization Optical Visibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Auer and L. Auer. Virtual Endoscopy—A New Tool for Teaching and Training in Neuroimaging. International Journal of Neuroradiology, 4:3–14, 1998.Google Scholar
  2. 2.
    D. Bartz and M. Skalej. VIVENDI—A Virtual Ventricle Endoscopy System for Virtual Medicine. In Proc. of Symposium on Visualization, pages 155–166, 324, 1999.Google Scholar
  3. 3.
    D. Bartz, M. Skalej, D. Weite, W. Straßer, and F. Duffner. A Virtual Endoscopy System for the Planning of Endoscopic Interventions in the Ventricle System of the Human Brain. In Proc. of BiOS’99: Biomedical Diagnostics, Guidance and Surgical Assist Systems, volume 3514, pages 91–100, 1999.Google Scholar
  4. 4.
    D. Bartz, W. Straβer, M. Skalej, and D. Weite. Interactive Exploration of Extra-and Intracranial Blood Vessels. In Proc. of IEEE Visualization, pages 389–392,547, 1999.Google Scholar
  5. 5.
    J. Beier, T. Diebold, H. Vehse, G. Biamino, E. Fleck, and R. Felix. Virtual Endoscopy in the Assessment of Implanted Aortic Stents. In Proc. of Computer Assisted Radiology, pages 183–188, 1997.Google Scholar
  6. 6.
    C. Davis, M. Ladds, B. Romanowski, S. Wildermuth, J. Knoplioch, and J. Debatin. Human Aorta: Preliminary Results with Virtual Endoscopy Based on Three-dimensional MR Imaging Data Sets. Radiology, 199:37–40, 1996.Google Scholar
  7. 7.
    G. Ferretti, D. Vining, J. Knoplioch, and M. Coulomb. Tracheobronchial Tree: Three-Dimensional Spiral CT with Bronchoscopic Perspective. Journal of Computer Assisted Tomography, 20(5):777–781, 1996.CrossRefGoogle Scholar
  8. 8.
    E. Gobbetti, P. Pili, A. Zorcolo, and M. Tuveri. Interactive Virtual Angioscopy. In Proc. of IEEE Visualization, pages 435–438, 1998.Google Scholar
  9. 9.
    T. He and L. Hong. Reliable Navigation for Virtual Endoscopy. In Proc. of IEEE Medical Imaging, 1999.Google Scholar
  10. 10.
    L. Hong, S. Muraki, A. Kaufman, D. Bartz, and T. He. Virtual Voyage: Interactive Navigation in the Human Colon. In Proc. of ACM SIGGRAPH, pages 27–34, 1997.Google Scholar
  11. 11.
    W. Lorensen and H. Cline. Marching Cubes: A High Resolution 3D Surface Construction Algorithm. In Proc. of ACM SIGGRAPH, pages 163–169, 1987.Google Scholar
  12. 12.
    W. Lorensen, F. Jolesz, and R. Kikinis. The Exploration of Cross-Sectional Data with a Virtual Endoscope. In R. Satava and K. Morgan, editors, Interactive Technology and New Medical Paradigms for Health Care, pages 221–230. 1995.Google Scholar
  13. 13.
    G. Rubin, C. Beaulieu, V. Argiro, H. Ringl, A. Norbash, J. Feller, M. Dake, R. Jeffrey, and S. Napel. Perspective Volume Rendering of CT and MR Images: Application for Endoscopic Imaging. In Radiology, volume 199, pages 321–330, 1994.Google Scholar
  14. 14.
    N. Scott, D. Olsen, and E. Gannett. An Overview of the VISUALIZE fx Graphics Accelerator Hardware. The Hewlett-Packard Journal, (May):28–34, 1998.Google Scholar
  15. 15.
    R. Shadidi, V Argiro, S. Napel, L. Gray, H. McAdams, G. Rubin, C. Beaulieu, R. Jeffrey, and A. Johnson. Assessment of Several Virtual Endoscopy Techniques Using Computed Tomography and Perspective Volume Rendering. In Proc. of Visualization in Biomedical Computing, volume LNCS 1131, pages 521–528, 1996.CrossRefGoogle Scholar
  16. 16.
    D. Vining, R. Shifrin, E. Grishaw, K. Liu, and R. Choplin. Virtual Colonoscopy (abstract). In Radiology, volume 193(P), page 446, 1994.Google Scholar
  17. 17.
    D. Vining, D. Stelts, D. Ann, P. Hemler, Y. Ge, G. Hunt, C. Siege, D. McCorquodale, M. Sarojak, and G. Ferretti. FreeFlight: A Virtual Endoscopy System. In First Joint Conference, Computer Vision, Virtual Reality and Robotics in Medicine and Medical Robotics and Computer-Assisted Surgery, volume LNCS 1205, pages 413–416, 1997.Google Scholar
  18. 18.
    D. Weite and U. Klose. Segmentation and Selective Imaging of Arteries and Veins from Contrast-Enhanced MRA Data. In Proc. of European Congress of Radiology, 1999.Google Scholar
  19. 19.
    R. Westermann and T. Ertl. Efficiently Using Graphics Hardware in Volume Rendering Applications. In Proc. of ACM SIGGRAPH, pages 169–177, 1998.Google Scholar
  20. 20.
    S. You, L. Hong, M. Wan, K. Junyapreasert, A. Kaufman, S. Muraki, Y. Zhou, M. Wax, and Z. Liang. Interactive Volume Rendering for Virtual Colonoscopy. In Proc. of IEEE Visualization, pages 343–346, 1997.Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Dirk Bartz
    • 1
  • Wolfgang Straβer
    • 1
  • Özlem Gürvit
    • 2
    • 3
  • Dirk Freudenstein
    • 3
  • Martin Skalej
    • 2
  1. 1.WSI/GRIS, University of TübingenTübingenGermany
  2. 2.Department of NeuroradiologyTübingenGermany
  3. 3.Department of NeurosurgeryTübingenGermany

Personalised recommendations