Three-dimensional Reconstruction and Visualization of the Cerebral Cortex in Primates

  • Sergio Demelio
  • Fabio Bettio
  • Enrico Gobbetti
  • Giuseppe Luppino
Part of the Eurographics book series (EUROGRAPH)


We present a prototype interactive application for the direct analysis in three dimensions of the cerebral cortex in primates. The paper provides an overview of the current prototype system and presents the techniques used for reconstructing the cortex shape from data derived from histological sections as well as for rendering it at interactive rates. Results are evaluated by discussing the analysis of the right hemisphere of the brain of a macaque monkey used for neuroanatomical tract-tracing experiments.


Surface Reconstruction Triangular Mesh Macaque Monkey Distance Transformation Graphic Accelerator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Bohm, T. Greitz, D. Kingsley, B. M. Berggren, and L. Olsson. Adjustable computerized stereotaxic brain atlas for transmission and emission tomography. American Journal of Neuroradiology, 4:731–733, 1983.Google Scholar
  2. 2.
    Gunilla Borgefors. Distance transformations in digital images. Computer Vision, Graphics, and Image Processing, 34(3):344–371, June 1986.CrossRefGoogle Scholar
  3. 3.
    G. J. Carman, H. A.Drury, and D. C. van Essen. Computational methods for reconstructing and unfolding the cerebral cortex. Cerebral Cortex, 5:506–517, 1995.CrossRefGoogle Scholar
  4. 4.
    O. Cuisenaire and B. Macq. Fast Euclidean distance transformation by propagation using multiple neighborhoods. Computer Vision and Image Understanding: CVIU, 76(2):163–172, November 1999.CrossRefGoogle Scholar
  5. 5.
    Olivier Cuisenaire. Distance Transformations: Fast Algorithms and Applications to Medical Image Processing. PhD thesis, Université Catholique de Louvain, 1999.Google Scholar
  6. 6.
    W. E. Lorensen and H. E. Cline. Marching cubes: a high resolution 3D surface construction algorithm. In M. C. Stone, editor, SIGGRAPH’ 87 Conference Proceedings (Anaheim, CA, July 27-31, 1987), pages 163–170. Computer Graphics, Volume 21, Number 4, July 1987.Google Scholar
  7. 7.
    G. Luppino and G. Rizzolatti. The organization of the frontal motor cortex. News in Physiological Sciences, 15:219–225, 2000.Google Scholar
  8. 8.
    M. Matelli, P. Govoni, C. Galletti, D.F. Kutz, and G. Luppino. Superior area 6 afferents from the superior parietal lobule in the macaque monkey. The Journal of Comparative Neurology, 402:327–352, 1998.CrossRefGoogle Scholar
  9. 9.
    Tomas Moller and Eric Haines. Real-Time Rendering. A. K. Peters Limited, 1999.Google Scholar
  10. 10.
    J.-M. Oliva, M. Perrin, and S. Coquillart. 3D reconstruction of complex polyhedral shapes from contours using a simplified generalized voronoi diagram. Computer Graphics Forum, 15(3):307–408, August 1996. Proceedings of Eurographics’ 96. ISSN 1067-7055.CrossRefGoogle Scholar
  11. 11.
    Bradley A. Payne and Arthur W. Toga. Surface mapping brain function on 3D models. IEEE Computer Graphics and Applications, 10(5):33–41, September 1990.CrossRefGoogle Scholar
  12. 12.
    S. P. Raya and J. K. Udupa. Shape-based interpolation of multidimensional objects. IEEE Transactions On Medical Imaging, 9(1):32–33, March 1990.CrossRefGoogle Scholar
  13. 13.
    G. M. Treece, R. W. Prager, A. H. Gee, and L. Berman. Surface interpolation for sparse cross sections using region correspondence. In Medical Image Understanding and Analysis 1999, July 1999.Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Sergio Demelio
    • 1
  • Fabio Bettio
    • 1
  • Enrico Gobbetti
    • 1
  • Giuseppe Luppino
    • 2
  1. 1.CRS4, VI Str. Ovest, Z.I. MacchiaredduUta (CA)Italy
  2. 2.Institute of Human PhysiologyUniversity of ParmaParmaItaly

Personalised recommendations