Advertisement

Topology-Based Visualization of Time-Dependent 2D Vector Fields

  • Xavier Tricoche
  • Gerik Scheuermann
  • Hans Hagen
Part of the Eurographics book series (EUROGRAPH)

Abstract

Topology-based methods have been successfully applied to the visualization of instantaneous planar vector fields. In this paper, we present the topology-based visualization of time-dependent 2D flows. Our method tracks critical points over time precisely. The detection and classification of bifurcations delivers the topological structure of time dependent vector fields. This offers a general framework for the qualitative analysis and visualization of parameter dependent 2D vector fields.

Keywords

Vector Field Hopf Bifurcation Time Plane Global Bifurcation Local Bifurcation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Helman J.L., Hesselink L., Representation and Display of Vector Field Topology in Fluid Flow Data Sets. Visualization in Scientific Computing, G.M. Nielson & B. Shriver, eds., 1989.Google Scholar
  2. [2]
    Helman J.L., Hesselink L., Surface Representation of Two-and Three-Dimensional Fluid Flow Topology. Proceedings of the First IEEE Conference on Visualization, pp. 6–13, IEEE Computer Society Press, Los Alamitos CA, 1990.Google Scholar
  3. [3]
    Abraham R.H., Shaw CD., Dynamics The Geometry of Behavior, Part I-IV. Aerial Press, Santa Cruz, CA, 1982–1988.Google Scholar
  4. [4]
    R.R. Dickinson Interactive Analysis of the Topology of 4D Vector Fields. IBM Journal of Research and Development, Vol. 35, No. 1/2, January/March 1991.Google Scholar
  5. [5]
    Lane D.A., UFAT—A Particle Tracer for Time-Dependent Flow Fields. Proceedings IEEE Visualization’94, IEEE Computer Society Press, Los Alamitos CA, 1994.Google Scholar
  6. [6]
    Becker B.G., Lane D.A., Max N.L., Unsteady Flow Volumes. Proceedings IEEE Visualization, IEEE Computer Society Press, Los Alamitos CA, 1995.Google Scholar
  7. [7]
    Silver D., Feature Visualization In Scientific Visualization Overviews—Methodologies —Techniques, pp.279–293, G.M. Nielson, H. Hagen, H. Müller (eds.), IEEE Computer Society, Los Alamitos CA, 1997.Google Scholar
  8. [8]
    Scheuermann G., Hagen H., A Data Dependent Triangulation for Vector Fields. In proceedings of Computer Graphics International 1998, pp.96–102, F.-E. Wolter, N. M. Patrikalakis (eds.), IEEE Computer Society Press, Los Alamitos CA, 1998.Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Xavier Tricoche
    • 1
  • Gerik Scheuermann
    • 1
  • Hans Hagen
    • 1
  1. 1.University of KaiserslauternKaiserslauternGermany

Personalised recommendations