Skip to main content

A Method of Manufacturing Highly Conductive Composite Materials by Coating Surfaces of Nonconductors with Fine Particulate Conductive Substances

  • Chapter
Electroactive Materials

Summary

A widely applicable aqueous dip-coating process termed substrate induced coagulation (SIC) suitable for coating various types of substrates (e.g. polar and unpolar polymers, inorganic glasses, metals) with fine particulate materials (e.g. carbon blacks, small particle size SiO2 or TiO2) has been developed. This process is based on the interaction of a conditioner (water soluble polymers or polyelectrolytes, e.g. proteins, polyvinylalcohols, polyacrylates with low charge density) which is adsorbed on the substrate with a surfactant-stabilized dispersion containing some additional electrolyte. Employing dispersions of conductive particles, the resulting coatings can be used as a conductive starting layer for electroplating. Such layers are fairly rinse-proof and may be applied in the metallization process of through holes in printed wiring boards or for the production of highly conductive composite materials from coated particles. SIC has also been used to improve the distribution of carbon in composite battery electrodes such as MnO2/C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fushimi K, Tsunakaw H, Yonahara K (1985) US Pat 4551267

    Google Scholar 

  2. [ Tomacic G(1986) US Pat 4615108

    Google Scholar 

  3. Kaun (1983) US Pat 4386019

    Google Scholar 

  4. Herscovici C, Leo A, Charkey A (1988) US Pat 4758473

    Google Scholar 

  5. Herscovici C (1990) US Pat 4920017

    Google Scholar 

  6. Iemmi(1981) US Patent 4294893

    Google Scholar 

  7. Balko(1982) US Patent 4339322

    Google Scholar 

  8. Kordesch K, Gsellmann J, Jahangir S, Schautz M (1984) Proc Symp Porous Electrode: Theory and Practise, Detroit, MI, vol 84–8. Electrochemical Society, Pennington, NJ, pp 163–190

    Google Scholar 

  9. Döring H, Clasen H, Zweynert M, Garche J, Jörissen L (1996) Materials for Bipolar Lead-Acid Batteries. In: Barsukov V, Beck F (eds) New Promising Electrochemical Systems for Recharge able Batteries. NATO ASI Series, Kluwer, Dordrecht, pp 3–13

    Chapter  Google Scholar 

  10. Beck F (1996) Design and Materials for Metal-Free Rechargeable Batteries. In: Barsukov V, Beck F (eds) New Promising Electrochemical Systems for Rechargeable Batteries. NATO ASI Series, Kluwer, Dordrecht, pp 393–417

    Chapter  Google Scholar 

  11. Kühner K, Was ist Ruß? Degussa AG, Geschäftsbereich Anorganische Chemieprodukte, Frankfurt M, Germany

    Google Scholar 

  12. Besenhard JO, Kühlkamp M, DT-PS 41 30 135

    Google Scholar 

  13. Besenhard JO, Kühlkamp M, Huslage J (1996) Polypropylen/Ruß Verbundwerkstoffe als Mikro- elektrodenessembles, GDCh-Monographie, Band 3, Gesellschaft Deutscher Chemiker, Frankfurt, p 461

    Google Scholar 

  14. Mallory GO, Hajdu JB (1990) Electroless Plating, American Electroplaters and Surface Finishers Society

    Google Scholar 

  15. Meyer H, Besenhard JO, Pejovnik S, Bele M, GB 9813733.4

    Google Scholar 

  16. Besenhard JO, Claussen O, Gausmann H-P, Meyer H, Mahlkow H, US Pat 5 705 219

    Google Scholar 

  17. Besenhard JO, Hanna S, Hagg Ch, Fiedler DA, Bele M, Pejovnik S, Meyer H (1997) Substrate induced coagulation: a method for coating surfaces with fine particulate materials. The Electrochemical Society Proceedings Series, 97–31, Interconnect and Contact Metallization, Rathore HS, Mathad GS, Plougonven C, Schuckert CC (ed) 96–107

    Google Scholar 

  18. Bele M, Pejovnik S, Besenhard JO, Ribitsch V (1998) Substrate induced coagulation of carbon black on gelatin-modified printed wiring board surfaces, Part 1, Gelatin adsorption onto printed wiring board surfaces. Colloid Surface A 143: 17

    Article  CAS  Google Scholar 

  19. Bele M, Kocevar K, Pejovnik S, Besenhard JO, Musevic I, Langmuir (submitted)

    Google Scholar 

  20. Kocevar K, Bele M, Pejovnik S, Besenhard JO, Musevic I, Chem Phys Lett (submitted)

    Google Scholar 

  21. Bele M, Kocevar K, Musevic I, Pejovnik S, Besenhard JO (2000) Colloid Surface A 168: 231

    Article  CAS  Google Scholar 

  22. Sedin DL, Rowlen KL (2000) Anal Chem 72: 2183

    Article  CAS  Google Scholar 

  23. van der Pauw LJ (1958) Philips Res Rep 13

    Google Scholar 

  24. Besenhard JO, Hagg Ch, Hanna S, Meyer H, Deutsches Patent, März 1997 eingereicht, Aktenzeichen 1971 103.9–45F

    Google Scholar 

  25. Haddadi-Asl V, Kazacos M, Skyllas-Kazacos M (1995) J Appl Electrochem 25: 29

    Article  CAS  Google Scholar 

  26. Kim BS, Hayes A, Ralston J (1995) Carbon 33: 25

    Article  CAS  Google Scholar 

  27. Hanna S (1999) Optimization of a Process for Coating Surfaces with Conductive Particles. PhD Thesis, Technische Universität Graz, Austria

    Google Scholar 

  28. Bele M, Kodre A, Arcon I, Grdadolnik J, Pejovnik S, Besenhard JO (1998) Carbon 36: 1207

    Article  CAS  Google Scholar 

  29. Abram JC, Bennett MC, (1968) J Colloid Interface Sci 27: 1

    Article  CAS  Google Scholar 

  30. Medalia AI, Rivin D (1976) In: Parfitt GD, Sing KSW (eds) Characterisation of Powder Surfaces, chapt 7. Academic Press, London, pp 334–335

    Google Scholar 

  31. Hess WM, Herd CR (1993) In: Donnet JB, Bansal RC, Wang WJ (eds) Carbon Black Science and Technology, chapt 3. Dekker, New York, pp 118–119

    Google Scholar 

  32. Celik MS (1998) J Colloid Interface Sei 129: 428

    Article  Google Scholar 

  33. Sasaki Y, Miyassu YI, Lee S, Nagadome S, Igimi H, Sugihara G (1996) Colloid Surface B-Biointerfaces 7: 181

    Article  CAS  Google Scholar 

  34. Besenhard JO, Meyer H, Gausmann HP, Mahlkow H, PCT/DE 92/00315

    Google Scholar 

  35. Besenhard JO, Meyer H, Gausmann HP, Ger Pat 41 13 407

    Google Scholar 

  36. Besenhard JO, Claußen O, Gausmann HP, Meyer H, Ger Pat 41 41 416

    Google Scholar 

  37. DIN 53 455-Vorschrift

    Google Scholar 

  38. DIN 53 457-Vorschrift

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this chapter

Cite this chapter

Voß, S., Nigmatoulline, V., Bele, M., Pejovnik, S., Besenhard, J.O. (2001). A Method of Manufacturing Highly Conductive Composite Materials by Coating Surfaces of Nonconductors with Fine Particulate Conductive Substances. In: Besenhard, J.O., Sitte, W., Stelzer, F., Gamsjäger, H. (eds) Electroactive Materials. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6211-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6211-8_7

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7273-5

  • Online ISBN: 978-3-7091-6211-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics