Advertisement

Neurobiology of Epileptogenesis in the Temporal Lobe

  • L. Jutila
  • A. Immonen
  • K. Partanen
  • J. Partanen
  • E. Mervaala
  • A. Ylinen
  • I. Alafuzoff
  • L. Paljärvi
  • K. Karkola
  • M. Vapalahti
  • A. Pitkänen
Part of the Advances and Technical Standards in Neurosurgery book series (NEUROSURGERY, volume 27)

Abstract

Molecular and network changes that are proposed to underlie the development of spontaneous seizures are best understood in subjects with symptomatic aetiology for temporal lobe epilepsy (TLE). Symptomatic TLE typically develops in three phases (Fig. 1): brain damage → latency phase or epileptogenesis → appearance of spontaneous seizures or epilepsy which can be easy to control or turn out to be drug-refractory over the time. According to some authors, the primary epileptogenesis is followed by a secondary epileptogenesis; that is, activity of primary focus leads to the appearance of an independent secondary focus over the time [61]. It is still controversial, however, whether and at which conditions secondary epileptogenesis can occur in the human brain.

Keywords

Granule Cell Status Epilepticus Dentate Gyrus Temporal Lobe Epilepsy Entorhinal Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adolphs R, Tranel D, Damasio H, Damasio A (1994) Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature 372: 669–672PubMedCrossRefGoogle Scholar
  2. 2.
    Adolphs R, Tranel D, Damasio AR (1998) The human amygdala in social judgment. Nature 393: 470–474PubMedCrossRefGoogle Scholar
  3. 3.
    Amaral DG, Insausti R (1990) Hippocampal formation. In: Paxinos G (ed) The human nervous system. Academic Press, San Diego, pp 711–755Google Scholar
  4. 4.
    Amaral DG, Price JL, Pitkänen A, Carmichael ST (1992) Anatomical organization of the primate amygdaloid complex. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, New York, pp 1–66Google Scholar
  5. 5.
    Babb TL, Brown WJ (1986) Neuronal, dendritic, and vascular profiles of human temporal lobe epilepsy correlated with cellular physiology in vivo. Adv Neurol 44: 949–966PubMedGoogle Scholar
  6. 6.
    Babb TL, Pretorius JK, Kupfer WR, Crandall PH (1989) Glutamate decar-boxylase-immunoreactive neurons are preserved in human epileptic hippocampus. J Neurosci 9: 2562–2574PubMedGoogle Scholar
  7. 7.
    Babb TL (1991) Research on the anatomy and pathology of epileptic tissue. In: Luders H (ed) Epilepsy surgery. Raven Press, New York, pp 719–727Google Scholar
  8. 8.
    Babb TL, Kupfer WR, Pretorius JK, Crandall PH, Levesque MF (1991) Synaptic reorganization of mossy fibers in human epileptic fascia dentata. Neuroscience 42: 351–363PubMedCrossRefGoogle Scholar
  9. 9.
    Babb TL, Pretorius JK (1993) Pathologic substrates of epilepsy. In: Wyllie E (ed) The treatment of epilepsy: principles and practice. Lea & Fibiger, Philadelphia, pp 55–70Google Scholar
  10. 10.
    Beach TG, Woodhurst WB, MacDonald DB, Jones MW (1995) Reactive microglia in hippocampal sclerosis associated with human temporal lobe epilepsy. Neurosci Lett 191: 27–30PubMedCrossRefGoogle Scholar
  11. 11.
    Bear J, Fountain NB, Lothman EW (1996) Responses of the superficial entorhinal cortex in vitro in slices from naive and chronically epileptic rats. J Neurophysiol 76: 2928–2940PubMedGoogle Scholar
  12. 12.
    Bengzon J, Kokaia Z, Elmér E, Nanobashvili A, Kokaia M, Lindvall O (1997) Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures. Proc Natl Acad Sci USA 94: 10432–10437PubMedCrossRefGoogle Scholar
  13. 13.
    Bernasconi N, Bernasconi A, Andermann F, Dubeau F, Feindel W, Reutens DC (1999) Entorhinal cortex in temporal lobe epilepsy. A quantitative MRI study. Neurology 52: 1870–1876Google Scholar
  14. 14.
    Bonda E, Petrides M, Ostry D, Evans A (1996) Specific involvement of human parietal systems and the amygdala in perception of biological motion. J Neurosci 16: 3737–3744PubMedGoogle Scholar
  15. 15.
    Bouchet C, Cazauvieilh JB (1825) De l’epilepsie consideree dans ses rapports avec la l’alienation mentale. Arch Gen Med 9: 510–542Google Scholar
  16. 16.
    Brooks-Kayal AR, Shumate MD, Jin H, Rikhter TY, Coulter DA (1998) Selective changes in single cell GABA (A) receptor subunit expression and function in temporal lobe epilepsy. Nat Med 4: 1166–1172PubMedCrossRefGoogle Scholar
  17. 17.
    Brockhaus H (1938) Zur normalen und patologischen anatomie des mandelkerngebietes. J Psychol Neurol 49: 1–136Google Scholar
  18. 18.
    Bruton CJ (1988) The neuropathology of temporal lobe epilepsy. Oxford University Press, New YorkGoogle Scholar
  19. 19.
    Buckmaster PS, Dudek FE (1997) Neuron loss, granule cell axon reorganization, and functional changes in the dentate gyrus of epileptic kainate-treated rats. J Comp Neurol 385: 385–404PubMedCrossRefGoogle Scholar
  20. 20.
    Buckmaster PS, Dudek FE (1999) In vivo intracellular analysis of granule cell axon reorganization in epileptic rats. J Neurophysiol 81: 712–721PubMedGoogle Scholar
  21. 21.
    Buhl EH, Otis TS, Mody I (1996) Zinc-induced collapse of augmented inhibition by GABA in a temporal lobe epilepsy model. Science 271: 369–373PubMedCrossRefGoogle Scholar
  22. 22.
    Cahill L, Haier RJ, Fallon J, Alkire MT, Tang C, Keator D, Wu J, McGaugh JL (1996) Amygdala activity at encoding correlated with with long-term, free recall of emotional information. Proc Natl Acad Sci USA 93: 8016–8021PubMedCrossRefGoogle Scholar
  23. 23.
    Cavanagh JB, Meyer A (1956) Aetiological aspects of Ammon’s horn sclerosis associated with temporal lobe epilepsy. Br Med J 2: 1403–1407PubMedCrossRefGoogle Scholar
  24. 24.
    Cavazos JE, Golarai G, Sutula TP (1991) Mossy fiber synaptic reorganization induced by kindling: time course of development, progression, and permanence. J Neurosci 11: 2795–2803PubMedGoogle Scholar
  25. 25.
    Chen K, Baram TZ, Soltesz I (1999) Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits. Nat Med 5: 888–894PubMedCrossRefGoogle Scholar
  26. 26.
    Chen K, Aradi II, Thon N, Eghbal-Ahmadi M, Baram TZ, Soltesz II (2000) Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability. Nat Med 7: 331–337CrossRefGoogle Scholar
  27. 27.
    Cronin J, Obenaus A, Houser CR, Dudek FE (1992) Electrophysiology of dentate granule cells after kainate-induced synaptic reorganization of the mossy fibers. Brain Res 573: 305–310PubMedCrossRefGoogle Scholar
  28. 28.
    De Lanerolle NC, Kim JH, Robbins RJ, Spencer DD (1989) Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Res 495: 387–395PubMedCrossRefGoogle Scholar
  29. 29.
    De Lanerolle NC, Spencer DD (1991) Neurotransmitter markers in human seizure foci. In: Coyle JT, Fisher CS (eds) Neurotransmitters and epilepsy. Wiley John, New York, pp 201–217Google Scholar
  30. 30.
    Du F, Whetsell WO Jr, Abou-Khalil B, Blumenkopf B, Lothman EW, Schwarz R (1993) Preferential neuronal loss in layer III of the entorhinal cortex in patients with temporal lobe epilepsy. Epilepsy Res 16: 223–233PubMedCrossRefGoogle Scholar
  31. 31.
    Du F, Eid T, Lothman EW, Köhler C, Schwarcz R (1995) Preferential neuronal loss in layer III of the medial entorhinal cortex in rat models of temporal lobe epilepsy. J Neurosci 15: 6301–6313PubMedGoogle Scholar
  32. 32.
    Duffy S, MacVicar BA (1999) Modulation of neuronal excitability by astrocytes. Adv Neurol 79: 573–581PubMedGoogle Scholar
  33. 33.
    Earle KM, Baldwin M, Penfield W (1953) Incisural sclerosis and temporal lobe seizures produced by hippocampal herniation at birth. Arch Neurol Psychiatry 69: 27–42Google Scholar
  34. 34.
    Falconer MA, Serafetinides EA, Corsellis JAN (1964) Etiology and pathogenesis of temporal lobe epilepsy. Arch Neurol 10: 233–248PubMedCrossRefGoogle Scholar
  35. 35.
    Fowler M (1957) Brain damage after febrile convulsions. Arch Dis Child 32: 67–76PubMedCrossRefGoogle Scholar
  36. 36.
    Frotscher M, Soriano E, Misgeld U (1994) Divergence of hippocampal mossy fibers. Synapse 16: 148–160PubMedCrossRefGoogle Scholar
  37. 37.
    Gastaut H, Toga M, Roger J, Gibson WC (1959) Correlation of clinical, electroencephalographic and anatomical findings in nine autopsied cases of “temporal lobe epilepsy”. Epilepsia 1: 56–85CrossRefGoogle Scholar
  38. 38.
    Gloor P (1992) Role of amygdala in temporal lobe epilepsy. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, New York, pp 505–538Google Scholar
  39. 39.
    Gloor P (1991) Mesial temporal sclerosis: historical background and an overview from a modern perspective. In: Luders H (ed) Epilepsy surgery. Raven Press, New York, pp 689–703Google Scholar
  40. 40.
    Gray WP, Sundstrom LE (1998) Kainic acid increases the proliferation of granule cell progenitors in the dentate gyrus of the adult rat. Brain Res 790: 52–59PubMedCrossRefGoogle Scholar
  41. 41.
    Goddard GV, McIntyre DC, Leech CK (1969) A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol 25: 295–330PubMedCrossRefGoogle Scholar
  42. 42.
    Heinemann U, Gabriel S, Schuchmann S, Eder C (1999) Contribution of astrocytes to seizure activity. Adv Neurol 79: 583–590PubMedGoogle Scholar
  43. 43.
    Houser CR (1990) Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy. Brain Res 535: 195–204PubMedCrossRefGoogle Scholar
  44. 44.
    Houser CR, Miyashiro JE, Swartz BE, Walsh GO, Rich JR, Delgado-Escueta AV (1990) Altered patterns of dynorphin immunoreactivity suggest mossy fiber reorganization in human hippocampal epilepsy. J Neurosci 10: 267–282PubMedGoogle Scholar
  45. 45.
    Hudson LP, Monoz DG, Miller L, McLachlan RS, Girvin JP, Blume WT (1993) Amygdaloid sclerosis in temporal lobe epilepsy. Ann Neurol 33: 622–631PubMedCrossRefGoogle Scholar
  46. 46.
    Hyman BT, Van Hoesen GW, Kromer LJ, Damasio AR (1986) Perforant pathway changes and the memory impairment of Alzheimer’s disease. Ann Neurol 20: 472–481PubMedCrossRefGoogle Scholar
  47. 47.
    Isokawa M (1998) Remodeling dendritic spines in the rat pilocarpine model of temporal lobe epilepsy. Neurosci Lett 258: 73–76PubMedCrossRefGoogle Scholar
  48. 48.
    Isokawa M (2000) Remodeling dendritic spines of dentate granule cells in temporal lobe epilepsy patients and the rat pilocarpine model. Epilepsia 41 [Suppl] 6: S14-S17Google Scholar
  49. 49.
    Jutila L, Ylinen A, Partanen K, Alafuzoff I, Mervaala E, Partanen J, Vapalahti M, Vainio P, Pitkänen A (2001) MR volumetry of the entorhinal, perirhinal, and temporopolar cortices in drug-refractory temporal lobe epilepsy. AJNR (in press)Google Scholar
  50. 50.
    Lemos T, Cavalheiro EA (1995) Suppression of pilocarpine-induced status epilepticus and the late development of epilepsy in rats. Exp Brain Res 102: 423–428PubMedCrossRefGoogle Scholar
  51. 51.
    Leonard BW, Amaral DG, Squire LR, Zola-Morgan S (1995) Transient memory impairment in monkeys with bilateral lesions of the entorhinal cortex. J Neurosci 15: 5637–5659PubMedGoogle Scholar
  52. 52.
    Lurton D, El Bahh B, Sundstrom L, Rougier A (1998) Granule cell dispersion is correlated with early epileptic events in human temporal lobe epilepsy. J Neurol Sci 154: 133–136PubMedCrossRefGoogle Scholar
  53. 53.
    Margerison JH, Corsellis JA (1966) Epilepsy and the temporal lobes. A clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes. Brain 89: 499–530PubMedCrossRefGoogle Scholar
  54. 54.
    Markakis EA, Gage FH (1999) Adult-generated neurons in the dentate gyrus and axonal projections to field CA3 and are surrounded by synaptic vesicles. J Comp Neurol 406: 449–460PubMedCrossRefGoogle Scholar
  55. 55.
    Masukawa LM, Uruno K, Sperling M, O’Connor MJ, Burdette LJ (1992) The functional relationship between antidromically evoked field responses of the dentate gyrus and mossy fiber reorganization in temporal lobe epileptic patients. Brain Res 579: 119–127PubMedCrossRefGoogle Scholar
  56. 56.
    McNamara RK, Routtenberg A (1995) NMDA receptor blockade prevents kainate induction of protein Fl/GAP-43 mRNA in hippocampal granule cells and subsequent mossy fiber sprouting in the rat. Mol Brain Res 33: 22–28PubMedCrossRefGoogle Scholar
  57. 57.
    Meyer A, Beck E, Shepherd M (1955) Unusually severe lesions in the brain following status epilepticus. Neurol Neurosurg Psychiatry 18: 24–33CrossRefGoogle Scholar
  58. 58.
    Mikkonen M, Soininen H, Kälviäinen R, Ylinen A, Vapalahti M, Paljärvi L, Pitkänen A (1998) Remodeling of neuronal circuitries in human temporal lobe epilepsy: Increased expression of highly polysialylated neural cell adhesion molecule in the hippocampus and the entorhinal cortex. Ann Neurol 44: 923–934PubMedCrossRefGoogle Scholar
  59. 59.
    Miller LA, McLachlan RS, Bouwer MS, Hudson LP, Munoz DG (1994) Amygdalar sclerosis: preoperative indicators and outcome after temporal lobectomy. J Neurol Neurosurg Psychiatry 57: 1099–1105PubMedCrossRefGoogle Scholar
  60. 60.
    Moriwaki A, Lu YF, Hayashi Y, Tomizawa K, Tokuda M, Itano T, Hatase O, Matsui H (1996) Immunosupressant FK506 prevents mossy fiber sprouting induced by kindling stimulation. Neurosci Res 25: 191–194PubMedGoogle Scholar
  61. 61.
    Morrell F, deToledo-Morrell L (1999) Secondary epileptogenesis and brain tumors. In: Kotagal P, Luders HO (eds) The epilepsies: etiologies and prevention. Academic Press, San Diego, pp 357–363Google Scholar
  62. 62.
    Norman RM (1964) The neuropathology of status epilepticus. Med Sci Law 4: 46–51PubMedGoogle Scholar
  63. 63.
    Nusser Z, Hajos N, Somogyi P, Mody I (1998) Increased number of synaptic GABA(A) receptors underlies potentiation at hippocampal inhibitory synapses. Nature 395: 172–177PubMedCrossRefGoogle Scholar
  64. 64.
    Okazaki MM, Evenson DA, Nadler JV (1995) Hippocampal mossy fiber sprouting and synapse formation after status epilepticus in rats: visualization after retrograde transport of biocytin. J Comp Neurol 352: 515–534PubMedCrossRefGoogle Scholar
  65. 65.
    Ollikainen J, Pitkänen A, Haapasalo H, Ylinen A, Vapalahti M, Kälviäinen R, Paljärvi L, Suhonen J (1999) Proliferation of hippocampal cells in patients with temporal lobe epilepsy. Epilepsia 40 [Suppl] 2: 203Google Scholar
  66. 66.
    Ounstedt C, Lindsay J, and Norman R (1966) Biological factors in temporal lobe epilepsy. Clinics in developmental medicine 22. Medical education and information unit. The spastic society in association with William Heinemann Medical Books Ltd, Suffolk, UKGoogle Scholar
  67. 67.
    Pare D, deCurtis M, Llinas R (1992) Role of the hippocampal-entorhinal loop in temporal lobe epilepsy: Extra- and intracellular study in the isolated guinea pig brain in vitro. J Neurosci 12: 1867–1881PubMedGoogle Scholar
  68. 68.
    Parent JM, Yy TW, Leibowitz RT, Geschwind DH, Sloviter RS, Lowenstein DH (1997) Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 17: 3727–3738PubMedGoogle Scholar
  69. 69.
    Parent JM, Janumpalli S, McNamara JO, Lowenstein DH (1998) Increased dentate granule cell neurogenesis following amygdala kindling in the adult rat. Neurosci Lett 247: 9–12PubMedCrossRefGoogle Scholar
  70. 70.
    Parent JM, Tada E, Fike JR, Lowenstein DH (1999) Inhibition of dentate granule cell neurogenesis with brain irradiation does not prevent seizure-induced mossy fiber synaptic reorganization in the rat. J Neurosci 19: 4508–4519PubMedGoogle Scholar
  71. 71.
    Perez Y, Morin F, Beaulieu C, Lacaille JC (1996) Axonal sprouting of CAl pyramidal cells in hyperexcitable hippocampal slices of kainate-treated rats. Eur J Neurosci 8: 736–748PubMedCrossRefGoogle Scholar
  72. 72.
    Pitkänen A, Tuunanen J, Kälviäinen R, Partanen K, Salmenperä T (1998) Amygdala damage in experimental and human epilepsy. Epilepsy Res 328: 233–253CrossRefGoogle Scholar
  73. 73.
    Pitkänen A (2000) Connectivity of the rat amygdaloid complex. In: Aggleton JP (ed) The functional analysis of the amygdala. Oxford University Press, Oxford, pp 31–115Google Scholar
  74. 74.
    Pitkänen A, Jolkkonen E, Kemppainen S (2000) Anatomic heterogeneity of the rat amygdaloid complex. A review. Folia Morphol (Warsaw) 59: 1–23Google Scholar
  75. 75.
    Pitkänen A, Pikkarainen M, Nurminen N, Ylinen A (2000) Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. A review. Ann N Y Acad Sci 911: 369–391PubMedCrossRefGoogle Scholar
  76. 76.
    Qiao X, Noebels JL (1993) Developmental analysis of hippocampal mossy fiber outgrowth in a mutant mouse with inherited spike-wave seizures. J Neurosci 13: 4622–4635PubMedGoogle Scholar
  77. 77.
    Represa A, Tremblay E, Ben-Ari Y (1990) Sprouting of mossy fibers in the hippocampus of epileptic human and rat. Adv Exp Med Biol 268: 419–424PubMedGoogle Scholar
  78. 78.
    Represa A, Ben-Ari Y (1992) Kindling is associated with the formation of novel mossy fiber synapses in the CA3 region. Exp Brain Res 92: 69–78PubMedCrossRefGoogle Scholar
  79. 79.
    Represa A, Jorquera I, Le Gal La Salle G, Ben-Ari Y (1993) Epilepsy induced collateral sprouting of hippocampal mossy fibers: does it induce the development of ectopic synapses with granule cell dendrites? Hippocampus 3: 257–268PubMedCrossRefGoogle Scholar
  80. 80.
    Ribak CE, Tran PH, Spigelman I, Okazaki MM, Nadler JV (2000) Status epilepticus-induced hilar basal dendrites on rodent granule cells contribute to recurrent excitatory circuitry. J Comp Neurol 2000 428: 240–253Google Scholar
  81. 81.
    Rutecki PA, Grossman RG, Armstrong D, Irish-Loewen S (1989) Electrophysiological connections between the hippocampus and entorhinal cortex in patients with complex partial seizures. J Neurosurg 70: 667–675PubMedCrossRefGoogle Scholar
  82. 82.
    Salmenperä T, Kälviäinen R, Partanen K, Pitkänen A (2000) Quantitative MRI volumetry of the entorhinal cortex in temporal lobe epilepsy. Seizure 9: 208–215PubMedCrossRefGoogle Scholar
  83. 83.
    Scharfman HE (1996) Hyperexitability of entorhinal cortex and hippocampus after application of aminooxyacetic acid (AOAA) to layer III of the rat medial entorhinal cortex in vitro. J Neurophysiol 76: 2986–3001PubMedGoogle Scholar
  84. 84.
    Scharfman HE, Goodman JH, Sallas AL (1999) Granule-like hilar neurons in pilocarpine treated rats and their synchronization with CA3 pyramidal neurons. Epilepsia 40 [Suppl] 7: 156Google Scholar
  85. 85.
    Scott BW, Wang S, Burnham WM, De Boni U, Wojtowicz JM (1998) Kindling-induced neurogenesis in the dentate gyrus of the rat. Neurosci Lett 248: 73–76PubMedCrossRefGoogle Scholar
  86. 86.
    Sheng JG, Boop FA, Mrak RE, Griffin WS (1994) Increased neuronal beta-amyloid precursor protein expression in human temporal lobe epilepsy: association with interleukin-1 alpha immunoreactivity. J Neurochem 63: 1872–1879PubMedCrossRefGoogle Scholar
  87. 87.
    Spigelman I, Yan X-X, Obenaus A, Lee Y-S, Wasterlain CG, Ribak CE (1998) Dentate granule cells form novel basal dedrites in a rat model of temporal lobe epilepsy. Neuroscience 86: 109–120PubMedCrossRefGoogle Scholar
  88. 88.
    Squire LR, Zola-Morgan S (1991) The medial temporal lobe memory system. Science 253: 1380–1386PubMedCrossRefGoogle Scholar
  89. 89.
    Sutula T, Cascino G, Cavazos J, Parada I, Ramirez L (1989) Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann Neurol 26: 321–330PubMedCrossRefGoogle Scholar
  90. 90.
    Sutula T, Cavazos J, Golarai G (1992) Alteration of long-lasting structural and functional effects of kainic acid in the hippocampus by brief treatment with phenobarbital. J Neurosci 12: 4173–4187PubMedGoogle Scholar
  91. 91.
    Sutula T, Koch J, Golarai G, Watanabe Y, McNamara JO (1996) NMDA receptor dependence of kindling and mossy fiber sprouting: evidence that the NMDA receptor regulates patterning of hippocampal circuitsin the adult brain. J Neurosci 16: 7398–7406PubMedGoogle Scholar
  92. 92.
    Suzuki WA (1996) The anatomy, physiology and functions of the perirhinal cortex. Curr Opin Neurobiol 6: 179–186PubMedCrossRefGoogle Scholar
  93. 93.
    Tauck DL, Nadler JV (1985) Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats. J Neurosci 5: 1016–1022PubMedGoogle Scholar
  94. 94.
    Van der Zee CE, Rashid K, Le K, Moore K-A, Stanisz J, Diamond J, Racine RJ, Fahnestock M (1995) Intraventricular administration of antibodies to nerve growth factor retards kindling and blocks mossy fiber sprouting in adult rats. J Neurosci 15: 5316–5323PubMedGoogle Scholar
  95. 95.
    Vezzani A, Conti M, De Luigi A, Ravizza T, Moneta D, Marchesi F, De Simoni MG (1999) Interleukin-1ß immunoreactivity and microglia are enhanced in the rat hippocampus by focal kainate application: functional evidence for enhancement of electrographic seizures. J Neurosci 19: 5054–5065PubMedGoogle Scholar
  96. 96.
    Wilson CL, Isokawa M, Babb TL, Crandall PH (1990) Functional connections in the human temporal lobe. I. Analysis of limbic system pathways using neuronal responses evoked by electric stimulation. Exp Brain Res 82: 279–290PubMedCrossRefGoogle Scholar
  97. 97.
    Wolf HK, Aliashkevich AF, Blumcke I, Wiestier OD, Zentner J (1997) Acta Neuropathol 93: 606–610PubMedCrossRefGoogle Scholar
  98. 98.
    Wuarin JP, Dudek FE (1996) Electrographic seizures and new recurrent excitatory circuits in the dentate gyrus of hippocampal slices from kainate-treated epileptic rats. J Neurosci 16: 4438–4448PubMedGoogle Scholar
  99. 99.
    Zhang N, Houser CR (1999) Ultrastructural localization of dynorphin in the dentate gyrus in human temporal lobe epilepsy: a study of reorganized mossy fiber synapses. J Comp Neurol 405: 472–490PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2002

Authors and Affiliations

  • L. Jutila
    • 1
    • 2
  • A. Immonen
    • 3
  • K. Partanen
    • 4
  • J. Partanen
    • 5
  • E. Mervaala
    • 5
  • A. Ylinen
    • 1
    • 2
  • I. Alafuzoff
    • 1
    • 6
  • L. Paljärvi
    • 6
  • K. Karkola
    • 7
  • M. Vapalahti
    • 3
  • A. Pitkänen
    • 1
    • 8
  1. 1.Department of Neuroscience and NeurologyUniversity of KuopioKuopioFinland
  2. 2.Department of NeurologyKuopio University HospitalKuopioFinland
  3. 3.Department of NeurosurgeryKuopio University HospitalKuopioFinland
  4. 4.Department of Clinical RadiologyKuopio University HospitalKuopioFinland
  5. 5.Department of Clinical NeurophysiologyKuopio University HospitalKuopioFinland
  6. 6.Department of PathologyKuopio University HospitalKuopioFinland
  7. 7.Department of Forensic MedicineKuopio University HospitalKuopioFinland
  8. 8.Epilepsy Research LaboratoryA.I. Virtanen Institute for Molecular SciencesKuopioFinland

Personalised recommendations