Advertisement

Abstract

Of the porphyrinoid structures occurring in nature the most important and most widespread are the red blood pigment heme (1), the green pigment of plant photosynthesis chlorophyll a (2), the bacterial photo-synthetic pigment bacteriochlorophyll a (3), and the “antipernicious” red pigment vitamin B12 (4). The basic function of these cofactors are determined by the incorporation of the different metal ions into the macrotetracycles. The different oxidation levels of the macrocyclic ligand system regulate the fine tuning of these functions. The final adaptation of the cofactors to their special molecular environments in the cell compartments is effected by variation of the substitution patterns of the chromophores.

Keywords

Total Synthesis Methanogenic Bacterium Ring Contraction Constitutional Isomer Cyclic Tetrapyrrole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dolphin D (ed) (1978–1979) The Porphyrins Vols 1–7. Academic Press, New YorkGoogle Scholar
  2. 2.
    Smith KM (ed) (1975) Porphyrins and Metalloporphyrins. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Vernon LP, Seely GR (eds) (1966) The Chlorophylls. Academic Press, New YorkGoogle Scholar
  4. 4.
    Stoll A, Wiedemann E (1952) Chlorophyll. Fortschr Chem Forsch 2: 538CrossRefGoogle Scholar
  5. 5.
    Zagalak B, Friedrich W (eds) (1979) Vitamin B12. de Gruyter, BerlinGoogle Scholar
  6. 6.
    Dolphin D (ed) (1982) Vitamin B12 Vols I, II. Wiley, New YorkGoogle Scholar
  7. 7.
    Eschenmoser A (1988) Vitamin B12: Experimente zur Frage nach dem Ursprung seiner molekularen Struktur. Angew Chem 100: 5CrossRefGoogle Scholar
  8. 8.
    Kräutler B (1987) The Porphinoids — Versatile Biological Catalyst Molecules. Chimia 41: 277Google Scholar
  9. 9.
    Scheer H (ed) (1991) Chlorophylls. CRC Press, Boca RatonGoogle Scholar
  10. 10.
    Kräutler B, Arigoni D, Golding BT (eds) (1998) Vitamin B12 and B12-Proteins. Wiley -VCH, WeinheimGoogle Scholar
  11. 11a.
    Battersby AR (1994) How Nature Builds the Pigment of Life: The Conquest of Vitamin B12. Science 264: 1551CrossRefGoogle Scholar
  12. 11b.
    Battersby AR, Blanche F, Cameron B, Crouzet J, Debussche L, Thibaut D, Vuilhorgne M, Leeper FJ (1995) Vitamin B12: Wie das Problem seiner Biosynthese gelöst wurde. Angew Chem 107: 421CrossRefGoogle Scholar
  13. 12a.
    Scott AI (1993) Wie die Natur Vitamin B12 synthetisiert — ein Überblick über die letzten vier Milliarden Jahre. Angew Chem 105: 1281CrossRefGoogle Scholar
  14. 12b.
    Scott AI (1998) How Nature Synthesizes B12 Without Oxygen. In: Kräutler B, Arigoni D, Golding BT (eds) Vitamin B12 and B12-Proteins. Wiley — VCH, Weinheim, p 81CrossRefGoogle Scholar
  15. 12c.
    Scott PJ (1991) The biosynthesis of vitamin B12. In: Jordan PM (ed) Biosynthesis of Tetrapyrroles. Elsevier, Amsterdam, p 101;CrossRefGoogle Scholar
  16. 12d.
    Scott AI (1994) The Discovery of Nature’s Pathway To Vitamin B12. A 25 Year Odyssey. Tetrahedron 50: 13315CrossRefGoogle Scholar
  17. 13.
    Montforts FP, Gerlach B, Höper F (1994) Discovery and Synthesis of Less Common Natural Hydroporphyrins. Chem Rev 94: 327CrossRefGoogle Scholar
  18. 14.
    Montforts FP, Glasenapp-Breiling M (1998) The Synthesis of Chlorins, Bacterio-chlorins, Isobacteriochlorins and Higher Reduced Porphyrins. In: Gribble GW, Gilchrist TL (eds) Progress in Heterocyclic Chemistry Vol. 10 p 1Google Scholar
  19. 15.
    Minehan TG, Kishi Y (1999) Totalsynthese des (+)-Tolyporphin-A-O,O-diacetats mit der vorgeschlagenen Struktur. Angew Chem 111: 972CrossRefGoogle Scholar
  20. 16.
    Minehan TG, Cook-Blumberg L, Kishi Y, Prinsep MR, Moore RE (1999) Revision der Struktur von Tolyporphin A. Angew Chem 111: 975CrossRefGoogle Scholar
  21. 17.
    Wang W, Kishi Y (1999) Synthesis and Structure of Tolyporphin A O, O-Diacetate. Org Lett 1: 1129CrossRefGoogle Scholar
  22. 18.
    Prinsep MR, Patterson GML, Larsen LK, Smith CD (1995) Further Tolyporphins from the Blue-Green Alga Tolypothrix nodosa. Tetrahedron 51: 10523CrossRefGoogle Scholar
  23. 19.
    Montforts FP, Glasenapp-Breiling M, Kusch D (1998) Porphyrins and Related Compounds. In: Schaumann E (ed) Houben-Weyl-Methods of Organic Chemistry Vol E9 d. Thieme, Stuttgard/New York, p 577Google Scholar
  24. 20.
    Bonnett R (1978) Nomenclature. In: Dolphin D (ed) The Porphyrins Vol 1. Academic Press, New York, p 1Google Scholar
  25. 21a.
    Jordan PM (1991) The biosynthesis of 5-aminolaevulinic acid and its transformation into uroporphyrinogen III. In: Jordan PM (ed) Biosynthesis of Tetrapyrroles. Elsevier, Amsterdam, p 1CrossRefGoogle Scholar
  26. 21b.
    Neier R (1996) Chemical Synthesis of Porphobilinogen and Studies of its Biosynthesis. Advances in Nitrogen Heterocycles 2: 35CrossRefGoogle Scholar
  27. 21c.
    Tietze LF, Schulz G (1993) Investigations Towards the Biosynthesis of Porphyrins and Corrins. Angew Chem 105: 1090CrossRefGoogle Scholar
  28. 22.
    Lever ABP, Gray HB (eds) (1989) Iron Porphyrins Vols 1,2,4,5. VCH, New YorkGoogle Scholar
  29. 23.
    DiNello RK, Chang CK (1978) Isolation and Modification of Natural Porphyrins. In: Dolphin D (ed) The Porphyrins Vol 1. Academic Press, New York, p 290Google Scholar
  30. 24.
    Wu W, Chang CK, Vartosis C, Babcock GT, Puustinen A, Wikström M (1992) Structure of Heme o Prosthetic Group from the Terminal Quinol Oxidase of Escherichia coli. J Am Chem Soc 114: 1182CrossRefGoogle Scholar
  31. 25a.
    Kusch D, Montforts FP (1995) Enantioselective Synthesis of Hematoporphyrin Stereoisomers. Tetrahedron Asymmetry 6: 867CrossRefGoogle Scholar
  32. 25b.
    Kojo S, Fukunishi K, Tsukamato I (1989) Erhalt der Konfiguration bei der nicht — Darwinistischen Evolution von Cytochrom c. Angew Chem 101: 64CrossRefGoogle Scholar
  33. 25c.
    Dickerson RE, Timkovich R, Boyer PD (1975) The Enzymes. Vol II. Academic Press, New YorkGoogle Scholar
  34. 26.
    D’Ambrosio M, Guerriero A, Debitus C, Ribes O, de Forges BR, Pietra F (1989) Corallistin A, a Second Example of a Free Porphyrin from Living Organism. Helv Chim Acta 72: 1451CrossRefGoogle Scholar
  35. 26b.
    D’Ambrosio M, Guerriero A, Debitus C, Ribes O, Pietra F (1993) On the Novel Free Porphyrins Corallistin B, C, D and E. Helv Chim Acta 76: 1489CrossRefGoogle Scholar
  36. 27a.
    Scheer H (1991) Structure and Occurrence of Chlorophylls. In: Scheer H (ed) Chlorophylls. CRC Press, Boca Raton, p 3Google Scholar
  37. 27b.
    Fookes CJR, Jeffry S (1989) The structure of chlorophyll c3. A novel marine photosynthetic pigment. J Chem Soc Chem Commun 1827Google Scholar
  38. 28a.
    Baker EW, Palmer SE (1978) Geochemistry of Porphyrins. In: Dolphin D (ed) The Porphyrins Vol 1. Academic Press, New York, p 485Google Scholar
  39. 28b.
    Callot HJ, Ocampo R (2000) Geochemistry of Porphyrins. In: Kadish MK, Smith KM, Guilard R (eds) The Porphyrin Handbook Vol 1. Academic Press, San Diego, San Francisco, New York, Boston, London, Sydney, TorontoGoogle Scholar
  40. 28c.
    Ocampo R, Bauder C, Callot HJ, Albrecht P (1992) Porphyrins from Messel oil shale. Geochimica et Cosmochimica Acta 56: 745CrossRefGoogle Scholar
  41. 29.
    Akhtar M (1991) Mechanism and stereochemistry of enzymes involved in the conversion of uroporphyrinogen III into haem. In: Jordan PM (ed) Biosynthesis of Tetrapyrroles. Elsevier, Amsterdam, p 67CrossRefGoogle Scholar
  42. 30.
    Sessler JL, Weghorn SJ (1997) Expanded Contracted and Isomeric Porphyrins. Pergamon, OxfordGoogle Scholar
  43. 31.
    Kadish MK, Smith KM, Guilard R (eds) (2000) The Porphyrin Handbook Vol 1,2. Academic Press, San Diego, San Francisco, New York, Boston, London, Sydney, TorontoGoogle Scholar
  44. 32a.
    Deisenhofer J, Norris JR (1993) The Photosynthetic Reaction Center. Academic Press, San DiegoGoogle Scholar
  45. 32b.
    Häder DP (1999) Photosynthese. Thieme, Stuttgart, New YorkGoogle Scholar
  46. 32c.
    Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauß N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.4 A resolution. Nature 411: 909CrossRefGoogle Scholar
  47. 33a.
    van den Bergh P, Cornaz P (1985) Lokalisierung und Therapie von Tumoren mit Porphyrinen. Nachr Chem Tech Lab 33: 582CrossRefGoogle Scholar
  48. 33b.
    Moan J, Berg K (1992) Photo-chemotherapy of Cancer: Experimental Research. Photochem Photobiol 55: 931CrossRefGoogle Scholar
  49. 33c.
    Bonnett R (1999) Photodynamic Therapy in Historical Perspective. Rev Contemp Pharmacother 10: 1Google Scholar
  50. 33d.
    Bonnet R (2000) Chemical aspects of photodynamic therapy. Gordon and Breach Science Publisher, SingaporeGoogle Scholar
  51. 34a.
    Douglas RH, Partridge JC, Dulai KS, Hunt DM, Mullineaux CW, Hynninen PH (1999) Enhanced retinal longwave sensitivity using a chlorophyll-derived photo-sensitiser in Malacosteus niger, a deep-sea fish with far red bioluminescence. Vision Research 39: 2817CrossRefGoogle Scholar
  52. 34b.
    Douglas RH, Partridge JC, Dulai K, Hunt D, Mullineaux CW, Tauber A, Hynninen PH (1998) Dragon fish see using chlorophyll. Nature 393: 423CrossRefGoogle Scholar
  53. 35a.
    Rinehart KL, Kishore V, Bible KC, Sakai R, Sullins DW, Li KM (1988) Didemnins and Tunichlorin: Novel Natural Products from the Marine Tunicate Trididemnum Solidum. J Nat Prod 51: 1CrossRefGoogle Scholar
  54. 35b.
    Bible KC, Buytendorp M, Zierath PD, Rinehart KL (1988) Tunichlorin: A nickel chlorin isolated from the Caribbean tunicate Trididemnum solidum. Proc Natl Acad Sci 85: 4582CrossRefGoogle Scholar
  55. 35c.
    Pettit GR, Kantoci D, Doubek DL, Tucker BE (1993) Isolation of the Nickel-Chlorin Chelate Tunichlorin from the South Pacific Ocean Sea Hare Dolabella Auricularia. J Nat Prod 56: 1981CrossRefGoogle Scholar
  56. 35d.
    Sings HL, Bible KC, Rinehart KL (1996) Acyl tunichlorins: A new class of nickel chlorins isolated from the Caribbean tunicate Tridemnum solidum. Proc Natl Acad Sci 93: 10560CrossRefGoogle Scholar
  57. 36.
    Karuso P, Bergquist PR, Buckleton JS, Cambie RC, Clark GR, Rickard CEF (1986) 132, 173-Cyclopheophorbide Enol, the first porphyrin isolated from a sponge. Tetrahedron Lett 27: 2177CrossRefGoogle Scholar
  58. 37.
    Falk H, Hoornaert G, Isenring HP, Eschenmoser A (1975) Über Enolderivate der Chlorophyllreihe. Darstellung von 132, 173-Cyclophäophorbid-enolen. Helv Chim Acta 58: 2347CrossRefGoogle Scholar
  59. 38a.
    Watanabe N, Yamamoto K, Ihshikawa H, Yagi A (1993) New Chlorophyll-A Related Compounds Isolated as Antioxidants from Marine Bivalves. J Nat Prod 56: 305CrossRefGoogle Scholar
  60. 38b.
    Ma L, Dolphin D (1995) Asymmetric Hydroxylation of Chlorophyll Derivatives: A Facile Entry to Both Diastereomers of Chlorophyllone a. Tetrahedron Asym 6: 313CrossRefGoogle Scholar
  61. 38c.
    Ma L, Dolphin D (1996) Synthesis and spectral studies of natural chlorins having antioxidative activity. Pure Appl Chem 68: 765CrossRefGoogle Scholar
  62. 39a.
    Sakata K, Yamamoto K, Ishikawa H, Yagi A, Etoh H, Ina K (1990) Chlorophyl-lone-A, A new Pheophorbide-A related Compound isolated from Ruditapes Philip-pinarum as an Antioxidative Compound. Tetrahedron Lett 31: 1165CrossRefGoogle Scholar
  63. 39b.
    Yamamoto K, Sakata K, Watanabe N, Yagi A, Brinen LS, Clardy J (1992) Chlorophyllonic Acid a Methylester, a New Chlorophyll a related Compound isolated as an Antioxidant from short-necked Clam, Ruditapes Philippinarum. Tetrahedron Lett 33: 2587CrossRefGoogle Scholar
  64. 40.
    Lederer E (1939) Sur l’isolement et la constitution chimique de la bonelline, pigment vert de Bonellia viridis. C R Acad Sci 209: 528Google Scholar
  65. 41a.
    Pelter A, Ballantine JA, Ferrito V, Jaccarini V, Psaila AF, Schembri PJ (1976) Bonnelin, a most Unusual Chlorin. J Chem Soc Chem Commun 1976: 999CrossRefGoogle Scholar
  66. 41b.
    Pelter A, Ballantine JA, Murray-Rust P, Ferrito V, Psaila AF (1978) The Structure of Anhydrobonellin and Bonellin, the Physiologically Active Pigment from the Marine Echiuroid Bonellia Viridis. Tetrahedron Lett 21: 1881CrossRefGoogle Scholar
  67. 41c.
    Pelter A, Abela-Medici A, Ballantine JA, Ferrito V, Ford S, Jaccarini V, Psaila AF (1978) The Structure of Amino-Acid Conjugates of Bonellin Derived from the Marine Echiuroid Bonellia Viridis. Tetrahedron Lett 23: 2017CrossRefGoogle Scholar
  68. 41d.
    Agius L, Ballantine JA, Ferrito V, Jaccarini V, Murray-Rust P, Pelter A, Psaila AF, Schembri PJ (1979) The Structure and Physiological Activity of Bonellin — A Unique Chlorin Derived from Bonellia Viridis. Pure Appl Chem 51: 1847CrossRefGoogle Scholar
  69. 41e.
    Ballantine JA, Psaila AF, Pelter A, Murray-Rust P, Ferrito V, Schembri PJ (1980) The Structure of Bonellin and its Derivatives. Unique Physiologically Active Chlorins from the Marine Echurian Bonellia Viridis. J Chem Soc Perkin Trans I 1980: 1080CrossRefGoogle Scholar
  70. 42.
    Montforts FP, Müller CM, Lincke A (1990) Bonellin: Aufklärung der absoluten Konfiguration. Liebigs Ann Chem 1990: 415CrossRefGoogle Scholar
  71. 43.
    Deeg R, Kriemler HP, Bergmann KH, Müller G (1977) Neuartige, methylierte Hydroporphyrine und deren Bedeutung bei der Cobyrinsäure Bildung. Hoppe-Seyler’s Z Physiol Chem 358: 339CrossRefGoogle Scholar
  72. 44.
    Arigoni D, Imfeld M (1979) Factor I ex Clostridium tetanomorphum: Proof of Structure and Relationship to Vitamin B12 Biosynthesis. In: Zagalak B, Friedrich W (eds) Vitamin B12. de Gruyter, Berlin, New York, p 315Google Scholar
  73. 45.
    Obinger C, Maj M, Nicholls P, Loewen P (1997) Activity, Peroxide Compound Formation, and Heme d Synthesis in Escherichia coli HPII Catalase. Arch Biochem Biophys 342: 58CrossRefGoogle Scholar
  74. 46.
    Murshudov GN, Grebenko AI, Barynin V, Dauter Z, Wilson KS, Vainshtein BK, Melik-Adamyan W, Bravo J, Ferran JM, Ferrer JC, Switala J, Loewen PC, Fita I (1996) Structure of the Heme d of Penicillium vitale and Escherichia coli Catalases. J Biol Chem 271: 8863CrossRefGoogle Scholar
  75. 47a.
    Lemberg R, Barret J (1973) Cytochromes. Academic Press, New York, p 8–14 and 233–240Google Scholar
  76. 47b.
    Stolzenberg AM, Strauss SH, Kolm RH (1981) Iron (II, III)-Chlorin and Isobacteriochlorin Complexes. Models of the Heme Prosthetic Groups in Nitrite and Sulfite Reductases: Means of Formation and Spectroscopic and Redox Properties. J Am Chem Soc 103: 4763CrossRefGoogle Scholar
  77. 47c.
    Shimada H, Orii Y (1978) The pH-Dependent Reactions of Pseudomonas aeruginosa Nitrite Reductase with Nitric Oxide and Nitrite. J Biochem 84: 1553Google Scholar
  78. 47d.
    Orii Y, Shimada H, Nozawa T, Hatano M (1977) The Interaction Between the Heme c and Heme d Moieties of Pseudomonas Nitrite Reductase as Reveals by Magnetic and Natural Circular Dichroism Studies. J Biochem 76: 983Google Scholar
  79. 47e.
    Shimada H, Orii Y (1976) Oxidation-Reduction Behavior of the Heme c and Heme d Moieties of Pseudomonas aeruginosa Nitrite Reductase and the Formation of an Oxygenated Intermediate at Heme d1. J Biochem 80: 135Google Scholar
  80. 48.
    Kita K, Konishi K, Anraku Y (1984) Terminal Oxidases of Escherichia coli Aerobic Respiratory Chain. J Biol Chem 259: 3375Google Scholar
  81. 49.
    Leeper FJ (1991) Intermediate Steps in the Biosynthesis of Chlorophylls. In: Scheer H (ed) Chlorophylls. CRC Press, Boca Raton, p 407Google Scholar
  82. 50.
    Griffiths WT (1991) Protochlorophyllide Photoreaction. In: Scheer H (ed) Chlorophylls. CRC Press, Boca Raton, p 433Google Scholar
  83. 57.
    Rüdiger W, Schoch S (1991) The Last Steps of Chlorophyll Biosynthesis. In: Scheer H (ed) Chlorophylls. CRC Press, Boca Raton, p 451Google Scholar
  84. 52a.
    Woodward RB (1960) Totalsynthese des Chlorophylls. Angew Chem 72: 651CrossRefGoogle Scholar
  85. 52b.
    Woodward RB, Ayer WA, Beaton JM, Bickelhaupt F, Bonnett R, Buchschacher P, Closs GL, Dutler H, Hannah J, Hauck FP, Ito S, Langemann A, Le Goff E, Leimgruber W, Lwowski W, Sauer J, Valenta Z, Volz H (1960) The Total Synthesis of Chlorophyll. J Am Chem Soc 82: 3800CrossRefGoogle Scholar
  86. 52c.
    Woodward RB, Ayer WA, Beaton JM, Bickelhaupt F, Bonnett R, Buchschacher P, Closs GL, Dutler H, Hannah J, Hauck FP, Ito S, Langemann A, Le Goff E, Leimgruber W, Lwowski W, Sauer J, Valenta Z, Volz H (1990) The Total Synthesis of Chlorophyll a. Tetrahedron 46: 7599CrossRefGoogle Scholar
  87. 53a.
    Snow RJ, Fookes CJR, Battersby AR (1981) Synthetic Routes to C-Methylated Chlorins. J Chem Soc Chem Commun 524Google Scholar
  88. 53b.
    Harrison PJ, Fookes CJR, Battersby AR (1981) Synthesis of the isobacteriochlorin macrocycle: a photochemical approach. J Chem Soc Chem Commun 797Google Scholar
  89. 53c.
    Battersby AR, Dutton CJ, Fookes CJR, Turner PD (1983) Synthesis of the Chlorin Macrocycle by a Photochemical Approach. J Chem Soc Chem Commun 1235Google Scholar
  90. 53d.
    Arnott DM, Battersby AR, Harrison PJ, Henderson GB, Sheng ZC (1984) Synthesis of 20-methyl and 20-cyano iso-bacteriochlorins: the Wittig-photochemical approach. J Chem Soc Chem Commun 525Google Scholar
  91. 53e.
    Battersby AR, Fookes CJR, Snow RJ (1984) Synthetic studies relevant to biosynthetic research on vitamin B12. Part 2. Syntheses of C-methylated chlorins via lactams. J Chem Soc Perkin Trans 1, 2733Google Scholar
  92. 53f.
    Battersby AR, Dutton CJ, Fookes CJR, Turner SPD (1988) Synthetic studies relevant to biosynthetic research on vitamin B12. Part 6. Synthesis of chlorins by a photochemical approach. J Chem Soc Perkin Trans 1, 1557Google Scholar
  93. 53g.
    Battersby AR, Reiter LA (1984) Synthetic studies relevant to biosynthetic research on vitamin B12. Part 3. An approach to isobacteriochlorins via nitrones. J Chem Soc Perkin Trans 1, 2742Google Scholar
  94. 53h.
    Battersby AR, Fookes CJR, Snow RJ (1984) Synthetic studies relevant to biosynthetic research on vitamin B12. Part 1. Syntheses of C-methylated chlorins based on 1-pyrrolines (3,4-dihydropyrroles). J Chem Soc Perkin Trans 1, 2725Google Scholar
  95. 54a.
    Montforts FP (1981) Ein gezielter Aufbau des Chlorinsystems. Angew Chem 93: 795CrossRefGoogle Scholar
  96. 54b.
    Montforts FP, Schwartz UM (1985) Ein gezielter Aufbau des Chlorinsy stems. Liebigs Ann Chem 1228Google Scholar
  97. 55a.
    Block MH, Zimmermann SC, Henderson GB, Turner SPD, Westwood SW, Leeper FJ, Battersby AR (1985) Syntheses relevant to vitamin B12 biosynthesis: synthesis of sirohydrochlorin and of its octamethyl ester. J Chem Soc Chem Commun 1061Google Scholar
  98. 55b.
    Brunt RD, Leeper FJ, Grgurina I, Battersby AR (1989) Biosynthesis of vitamin B12: synthesis of (+/-) [5–13C] factor-1 ester: determination of the oxidation state of precorrin-1 . J Chem Soc Chem Commun 428Google Scholar
  99. 56.
    Battersby AR, Dutton CJ, Fookes CJR (1988) Synthetic studies relevant to biosynthetic research on vitamin B12. Part 7. Synthesis of (+/-)-bonellin dimethyl ester. J Chem Soc Perkin Trans 1, 1569CrossRefGoogle Scholar
  100. 57a.
    Montforts FP, Schwartz UM (1985) Totalsynthese von (+/-) Bonellindimethy-lester. Angew Chem 97: 767CrossRefGoogle Scholar
  101. 57b.
    Montforts FP, Schwartz UM (1991) Totalsynthese von (+/-) Bonellin-dimethylester. Liebigs Ann Chem 709Google Scholar
  102. 58.
    Roth M, Dubs P, Gotschi E, Eschenmoser A (1971) Sulfidkontraktion via alkylative Kupplung: eine Methode zur Darstellung von β-Dicarbonylderivaten. Helv Chim Acta 60: 3039Google Scholar
  103. 58b.
    Eschenmoser A, Wintner CE (1977) Natural product synthesis and vitamin B12. Science 196: 1410CrossRefGoogle Scholar
  104. 59.
    Hynninen PH (1991) Chemistry of Chlorophylls: Modifications. Scheer H (ed) Chlorophylls. CRC Press, Boca Raton, p 145Google Scholar
  105. 60.
    Sotiriou C, Chang CKJ (1988) Synthesis of the Heme Prosthetic Group of Bacterial Terminal Oxidase. J Am Chem Soc 110: 2264CrossRefGoogle Scholar
  106. 61a.
    Michalski TJ, Hunt JE, Bowman MK, Smith U, Bardeen K, Gest H, Norris JR, Katz JJ (1987) Bacteriopheophytin g — properties and some speculations on a possible primary role for Bacteriochlorophyll g and b in the biosynthesis of chlorophylls. Proc Natl Acad Sci USA 84: 2570CrossRefGoogle Scholar
  107. 61b.
    Oelze J (1985) Analysis in bacteriochlorophylls. Meth Microbiol 18: 257CrossRefGoogle Scholar
  108. 61c.
    Smith KM (1991) The structure and biosynthesis of bacteriochlorophylls. In: Jordan PM (ed) Biosynthesis of Tetrapyrroles. Elsevier, Amsterdam, p 237CrossRefGoogle Scholar
  109. 62.
    Prinsep MR, Caplan FR, Moore RE, Patterson GML, Smith CD (1992) Tolyporphin, a Novel Multidrug Resistance Reversing Agent from the Blue Green Alga Tolypothrix nodosa. J Am Chem Soc 114: 385CrossRefGoogle Scholar
  110. 63.
    Prinsep MR, Patterson GML, Larsen LK, Smith CD (1998) Tolyporphins J and K, Two Further Porphinoid Metabolites from the Cyanobacterium Tolypothrix nodosa. J Nat Prod 61: 1133CrossRefGoogle Scholar
  111. 64a.
    Smith CD, Prinsep MR, Caplan FR, Moore RE, Patterson GML (1994) Reversal of Multiple Drug Resistance by Tolyporphin, a Novel Cyanobacterial Natural Product. Oncol Res 6: 211Google Scholar
  112. 64b.
    Morliére P, Maziére JC, Santus R, Smith CD, Prinsep MR, Stobbe CC, Fenning MC, Golberg JL, Chapman JD (1998) Tolyporphin: A Natural Product from Cyanobacteria with Potent Photosensitizing Activity against Tumor Cells in Vitro and in Vivo. Cancer Res 58: 3571Google Scholar
  113. 65.
    Minehan TG, Kishi Y (1997) Extension of the Eschenmoser Sulfide Contraction/Iminoester Cyclization Method to the Synthesis of Tolyporphin Chromophore. Tetrahedron Lett 38: 6811CrossRefGoogle Scholar
  114. 66a.
    Siegel LM, Murphy MJ, Kamin H (1973) Reduced Nicotinamide Adenine Dinucleotide Phosphat-Sulfite Reductase of Enterobacteria. I. The Escherichia coli Hemoflavoprotein: Molecular Parameters and Prosthetic Groups. J Biol Chem 248: 251Google Scholar
  115. 66b.
    Siegel LM (1978) Structure and Function of Siroheme and Siroheme Enzymes. In: Singer TP, Ondarza RN (eds) Mechanisms of Oxidizing Enzymes (Dev. Biochem. 1) Elsevier/North Holland, New York, p 201Google Scholar
  116. 66c.
    Siegel LM, Murphy MJ, Kamin H (1978) Siroheme: Methods of Isolation and Characterisation. Methods Enzymol 52: 436CrossRefGoogle Scholar
  117. 67a.
    Lee JP, LeGall J, Peck HD jr (1973) Isolation of Assimilatory-Dissimilatory-Type Sulfite Reductase from Desulfovibrio vulgaris. J Bacteriol 115: 529Google Scholar
  118. 67b.
    Murphy MJ, Siegel LM, Tove SR, Kamin H (1974) Siroheme: A New Prosthetic Group Participating in Six-Electron Reduction Reactions Catalyzed by Both Sulfite and Nitrite Reductases. Proc Natl Acad Sci USA 71: 612CrossRefGoogle Scholar
  119. 67c.
    Aparicio PJ, Knaff DB, Malkin R (1975) The Role of an Iron-Sulfur Center and Siroheme in Spinach Nitrite Reductase. Arch Biochem Biophys 169: 102CrossRefGoogle Scholar
  120. 67d.
    Vega JM, Garrett RH, Siegel LM (1975) Siroheme: A Prosthetic Group of the Neurospora crassa Assimilatory Nitrite Reductase. J Biol Chem 250: 7980Google Scholar
  121. 67e.
    Porra RJ, Skyring GW (1976) The Isobacter-iochlorin-Type Prosthetic Groups of Various Microbiol Sulphite Reductases. In: Doss M (ed) Porphyrins in Human Diseases. Karger, Basel, p 459Google Scholar
  122. 67f.
    Stoller ML, Malkin R, Knaff DB (1977) Oxidation-Reduction Properties of Photosynthetic Nitrite Reductase. FEBS Letters 81: 271CrossRefGoogle Scholar
  123. 67g.
    Seki Y, Sogawa N, Ishimoto M (1981) Siroheme as an Active Catalyst in Sulfite Reduction. J Biochem 90: 1487Google Scholar
  124. 68.
    Battersby AR, Jones K, McDonald E, Robinson JA, Morris HR (1977) The structures and chemistry of isobacteriochlorins from Desulphovibrio gigas. Tetrahedron Lett 25: 2213CrossRefGoogle Scholar
  125. 69a.
    Battersby AR, McDonald E, Morris HR, Thompson M, Williams DC, Bykhovsky VY, Zaitseva NI, Bukin VN (1977) Biosynthesis of vitamin B12: structural studies on the corriphyrins from Propionibacterium shermanii and the link with sirohydrochlorin. Tetrahedron Lett 25: 2217CrossRefGoogle Scholar
  126. 69b.
    Battersby AR, McDonald E, Thompson M, Bykhovsky VY (1978) Biosynthesis of vitamin B12: proof of A-B structure for sirohydrochlorin by its specific incorporation into cobyrinic acid. J Chem Soc Chem Commun 3: 150CrossRefGoogle Scholar
  127. 70a.
    Timkovich R, Cork MS, Taylor PV (1984) Proposed Structure for the Noncova-lently Associated Heme Prosthetic Group of Dissimilatory Nitrite Reductases. J Biol Chem 259: 1577Google Scholar
  128. 70b.
    Timkovich R, Cork MS, Taylor PV (1984) Proposed Structure for the Noncovalently Associated Heme Prosthetic Group of Dissimilatory Nitrite Reductases. J Biol Chem 259: 15089Google Scholar
  129. 71a.
    Chang CK (1985) On the Structure of Heme d1. J Biol Chem 260: 9520Google Scholar
  130. 71b.
    Chang CK (1994) Heme d1 and other heme cofactors from bacteria. Ciba Found Symp 180: 228Google Scholar
  131. 71c.
    Chang CK (1993) Studies on pigment of life: novel porphyrinoids from bacteria. Youji Huaxue 13: 171Google Scholar
  132. 72a.
    Chang CK, Wu W (1986) The Porphinedione Structure of Heme dx. J Biol Chem 261: 8593Google Scholar
  133. 72b.
    Chang CK, Timkovich R, Wu W (1986) Evidence That Heme dx Is a 1,3-Porphindione. Biochemistry 25: 8447CrossRefGoogle Scholar
  134. 73a.
    Wu W, Chang CK (1987) Structure of “Dioneheme”. Total Synthesis of the Green Heme Prosthetic Group in Cytochrome cd1 Dissimilatory Nitrite Reductase. J Am Chem Soc 109: 3149CrossRefGoogle Scholar
  135. 73b.
    Chang CK, Sotiriou C (1987) A Novel Method of Functionalizing the Ethyl Chain of Octaethylporphyrin. J Org Chem 52: 926CrossRefGoogle Scholar
  136. 74a.
    Montforts FP, Romanowski F, Bats JW (1992) A Convenient Synthesis Of The Nitrite Reducing Cofactor Heme d1 From Hematoporphyrin. Tetrahedron Lett 33: 765CrossRefGoogle Scholar
  137. 74b.
    Montforts FP, Romanowski F, Bats JW (1989) Eine einfache Synthese von Dioxoisobakteriochlorinen aus Hämatoporphyrin. Angew Chem 101: 471CrossRefGoogle Scholar
  138. 74c.
    Kusch D, Töllner E, Lincke A, Montforts FP (1995) Eine einfache chirogen enatioselektive Synthese von Chlorinen und Isobakteriochlorinen. Angew Chem 107: 874CrossRefGoogle Scholar
  139. 74d.
    Kusch D, Montforts FP (1995) Enantioselective Synthesis of Hematoporphyrin Stereoisomers. Tetrahedron Asym 6: 867CrossRefGoogle Scholar
  140. 74e.
    Romanowski F, Mai G, Kusch D, Montforts FP, Bats JW (1996) Stereoselektive Synthese des nitritreduzierenden Cofaktors Häm d1 ausgehend von Hämatoporphyrin. Helv Chim Acta 79: 1572CrossRefGoogle Scholar
  141. 75a.
    Micklefield J, Mackman RL, Aucken CJ, Beckmann M, Block MH, Leeper FJ, Battersby AR (1993) A Novel Stereoselective Synthesis of the Macrocycle of Haem d1 that Establishes its Absolute Configuration as 2R,7R. J Chem Soc Chem Commun 3: 275CrossRefGoogle Scholar
  142. 75b.
    Aucken CJ, Leeper FJ, Battersby AR (1997) Haem d1: stereoselective synthesis of the reduced form of its parent macrocycle using the original coupling strategy. J Chem Soc Perkin Trans 1, 2099CrossRefGoogle Scholar
  143. 75c.
    Mackman RL, Micklefield J, Block MH, Leeper FJ, Battersby AR (1997) Haem d1: development of a new coupling procedure leading to the synthesis of isobacteriochlorins. J Chem Soc Perkin Trans 1, 2111CrossRefGoogle Scholar
  144. 75d.
    Micklefield J, Beckmann M, Mackman RL, Block MH, Leeper FJ, Battersby AR (1997) Haem d1: stereoselective synthesis of the macrocyle to establish its absolute configuration as 2R,1R. J Chem Soc Perkin Trans 1, 2123CrossRefGoogle Scholar
  145. 76.
    Spencer JB, Stolowich NJ, Roessner CA, Scott AI (1993) The Escherichia coli cysG gene encodes the multifunctional protein, siroheme synthase. FEBS 335: 57CrossRefGoogle Scholar
  146. 77a.
    Matthews JC, Timkovich R (1993) Biosynthetic Origins of the Carbon Skelton of Heme d1. Bioorg Chem 21: 71CrossRefGoogle Scholar
  147. 77b.
    Palmedo G, Seither P, Koerner H, Matthews J, Burkhalter RS, Timkovich R, Zumft WG (1995) Resolution of the nitD locus for heme d1 synthesis of cytochrome cd1 from Pseudomonas stutzen. Eur J Biochem 232: 737CrossRefGoogle Scholar
  148. 77c.
    Kawasaki S, Arai H, Igarashi Y, Kodama T (1995) Sequencing and characterization of the downstream region of the genes encoding nitrite reductase and cytochrome c-551 (nirSM) from Pseudomonas aeruginosa: identification of the gene necessary for biosynthesis of heme d1. Gene 167: 87CrossRefGoogle Scholar
  149. 78.
    Yap-Bondoc F, Bondoc LL, Timkovich R, Baker DC, Hebbler A (1990) C-methyla-tion Occurs during the Biosynthesis of Heme d1. J Biol Chem 265: 13498Google Scholar
  150. 79a.
    Eschenmoser A (1974) Organische Naturstoffsyn these heute. Vitamin B12 als Beispiel. Naturwissenschaften 61: 513CrossRefGoogle Scholar
  151. 79b.
    Eschenmoser A (1970) Roads to corrins. Quart Rev Chem Soc 24: 366CrossRefGoogle Scholar
  152. 79c.
    Eschenmoser A (1976) Post-B12 problems in corrin synthesis. Chem Soc Rev 5: 377CrossRefGoogle Scholar
  153. 80.
    Montforts FP, Ofner S, Rasetti V, Eschenmoser A, Woggon WD, Jones K, Battersby AR (1979) Ein synthetischer Zugang zum Strukturtyp der Isobakteriochlorine. Angew Chem 91: 752CrossRefGoogle Scholar
  154. 81.
    Battersby AR, Westwood SW (1989) Synthetic studies relevant to biosynthetic research on vitamin B12. Part 5. Synthesis of (RS)-ring-B imide. J Chem Soc Perkin Trans 1, 1679Google Scholar
  155. 82.
    Diekert G, Jaenchen R, Thauer RK (1980) Biosynthetic evidence for a Nickel tetrapyrrole structure of Factor F430 from Methanobacterium thermoautotrophicum. FEBS Lett. 119: 118CrossRefGoogle Scholar
  156. 83a.
    Pfaltz A, Jaun B, Fässler A, Eschenmoser A, Jaenchen R, Gilles HH, Diekert G, Thauer RK (1982) Factor F430 from methanogenic bacteria: structure of porphiniod ligand system. Helv Chim Acta 65: 828CrossRefGoogle Scholar
  157. 83b.
    Fässler A, Kobelt A, Pfaltz A, Eschenmoser A, Baldon C, Battersby AR, Thauer RK (1985) Factor F430 from methanogenic bacteria. Absolute configuration. Helv Chim Acta 68: 2287Google Scholar
  158. 83c.
    Livingston DA, Pfaltz A, Schreiber J, Eschenmoser A, Ankel-Fuchs D, Moll J, Jaenchen R, Thauer RK (1984) Factor F430 from methanogenic bacteria: structure of the protein-free factor. Helv Chim Acta 67: 334CrossRefGoogle Scholar
  159. 83d.
    Pfaltz A, Livingston DA, Jaun B, Diekert G, Thauer RK, Eschenmoser A (1985) Factor F430 from methanogenic bacteria: nature of the isolation artifacts of F430, a contribution to the chemistry of F430 and the conformational stereochemistry of ligand periphery of hydroporphinoid nickel(II) complexes. Helv Chim Acta 68: 1338CrossRefGoogle Scholar
  160. 83e.
    Fässler A, Pfaltz A, Müller PM, Farooq S, Kratky C, Kräutler B, Eschenmoser A (1982) Preparation and properties of some hydrocorphinoid nickel(II) complexes. Helv Chim Acta 65: 812CrossRefGoogle Scholar
  161. 83f.
    Jaun B (1990) Coenzyme F430 from Methanogenic Bacteria: Oxidation of F430 Penta-methyl Ester to Ni(II) Form. Helv Chim Acta 73: 2209CrossRefGoogle Scholar
  162. 84a.
    Kratky C, Fässler A, Pfaltz A, Kräutler B, Jaun B, Eschenmoser A (1984) Chemistry of corphinoids: structural properties of corphinoid nickel(II) complexes related to coenzyme F430. J Chem Soc Chem Commun 1368CrossRefGoogle Scholar
  163. 84b.
    Eschenmoser A (1986) Chemistry of cophinoids. Ann NY Acad Sci 471: 108CrossRefGoogle Scholar
  164. 84c.
    Jaun B, Pfaltz A (1986) Coenzyme F430 from Methanogenic Bacteria: Reversible One-electron Reduction of F430 Pentamethyl Ester to Nickel(I) Form. J Chem Soc Chem Commun 1327Google Scholar
  165. 84d.
    Färber G, Keller W, Kratky C, Jaun B, Pfaltz A, Spinner C, Kobelt A, Eschenmoser A (1991) Coenzyme F430 from methanogenic bacteria: complete assignment of configuration based on an X-ray analysis of 12,13-diepi-F430 pentamethyl ester and on NMR spectroscopy. Helv Chim Acta 74: 697CrossRefGoogle Scholar
  166. 84e.
    Hamilton CL, Scott RA, Johnson MK (1989) The Magnetic and Electronic Properties of Methanobacterium thermoautotrophicum (Strain A H) Methyl Coenzyme M Reductase and its Nickel Tetrapyrrole Cofactor F430. J Biol Chem 264: 11605Google Scholar
  167. 84f.
    Furenlid LR, Renner MW, Smith KM, Fajer J (1990) Structural Consequences of Nickel versus Macrocycle Reductions in F430 Models: EXAFS Studies of Ni(I) Anion and Ni(II) π Anion Radicals. J Am Chem Soc 112: 1634CrossRefGoogle Scholar
  168. 84g.
    Crumbliss AL, McLachlan KL (1990) Electrochemistry of Heat-extracted Methanogenic Bacterial Cofactor F430. Inorg Chim Acta 170: 161CrossRefGoogle Scholar
  169. 84h.
    Friedman HC, Klein A, Thauer RK (1991) Biochemistry of coenzyme F430, a nickel porphinoid involved in methanogenesis. In: Jordan PM (ed) Biosynthesis of Tetrapyrroles. Elsevier, Amsterdam, p 139CrossRefGoogle Scholar
  170. 85a.
    Diekert G, Weber B, Thauer RK (1980) Nickel dependence of factor F430 content of methanogenic bacteria. J Bacteriol 148: 273Google Scholar
  171. 85b.
    Ellefson WL, Wolfe RS (1981) Component C of the methylreductase system of Methanobacterium. J Biol Chem 256: 4259Google Scholar
  172. 85c.
    Holliger C, Schraa G, Stupperich E, Stams AJM, Zehnder AJB (1992) Evidence for the Involvement of Corrinoids and Factor F430 in the Reductive Dechlorination of 1,2-Dichloroethane by Methanosarcina barkeri. J Bacteriol 174: 4427Google Scholar
  173. 85d.
    Krone UE, Laufer K, Thauer RK (1989) Coenzyme F430 as a Possible Catalyst for the Reductive Dehalogenation of Chlorinated C1 Hydrocarbons in Methanogenic Bacteria. Biochemistry 28: 10061CrossRefGoogle Scholar
  174. 86a.
    Fässler A, Pfaltz A, Kräutler B, Eschenmoser A (1984) Chemistry of corphinoids: synthesis of a nickel(II) complex containing the chromophore system of coenzyme F430. J Chem Soc Chem Commun 1365Google Scholar
  175. 86b.
    Kratky C, Waditschatka R, Angst C, Johansen JE, Plaquevent JC, Schreiber J, Eschenmoser A (1985) The saddle conformation of hydroporphinoid nickel(II) complexes: structure, origin, and stereochemical consequences. Helv Chim Acta 68: 1312CrossRefGoogle Scholar
  176. 87.
    Roessner CA, Warren MJ, Santander PJ, Atshaves BP, Ozaki SI, Stolowich NJ, Iida K, Scott AI (1992) Expression of 9 Salmonella typhimurium enzymes for cobinamide synthesis. FEBS 301: 73CrossRefGoogle Scholar
  177. 88a.
    Müller G, Schmiedl J, Schneider E, Sedlmeier R, Wörner G, Scott AI, Williams HJ, Santander PJ, Stolowich NJ, Fagerness PE, Mackenzie NE (1986) Structure of Factor S3, a Metabolite of Propionibacterium shermanii Derived from Uroporphyrinogen I. J Am Chem Soc 108: 7875CrossRefGoogle Scholar
  178. 88b.
    Müller G, Schmiedl J, Savidis L, Wirth G, Scott AI, Santander PJ, Williams HJ, Stolowich NJ, Kriemler HP (1987) Factor S1, a Natural Corphin from Propionibacterium shermanii. J Am Chem Soc 109: 6902CrossRefGoogle Scholar
  179. 89.
    Folkers K (1979) Introductory remarks. Historical perspectives of the isolation of crystalline vitamin B12. In: Zagalak B, Friedrich W (eds) Vitamin B12. de Gruyter, BerlinGoogle Scholar
  180. 90.
    Hodgkin DC (1979) New and old problems in the structure analysis of vitamin B12. In: Zagalak B, Friedrich W (eds) Vitamin B12. de Gruyter, BerlinGoogle Scholar
  181. 91a.
    Eschenmoser A, Wintner CE (1977) Natural Product Synthesis and Vitamin B12. Sience 196: 1410CrossRefGoogle Scholar
  182. 91b.
    Eschenmoser A (1982) Über organische Naturstoff synthese: Von der Synthese des Vitamin B12 zur Frage nach dem Ursprung der Corrinstruktur. Nova Acta Leopoldina 55: 5Google Scholar
  183. 92a.
    Woodward RB (1979) Synthetic vitamin B12. In: Zagalak B, Friedrich W (eds) Vitamin B12. de Gruyter, BerlinGoogle Scholar
  184. 92b.
    Woodward RB (1968) Recent Advances in the Chemistry of Natural Products. Pure Appl Chem 17: 519CrossRefGoogle Scholar
  185. 92c.
    Woodward RB (1973) The Total Synthesis of Vitamin B12. Pure Appl Chem 33: 145CrossRefGoogle Scholar
  186. 93.
    Imfeld M, Townsend CA, Arigoni D (1976) Intact Transfer of Methyl Groups in the Biosynthesis of Vitamin B12. J Chem Soc Chem Commun 541Google Scholar
  187. 94.
    Thibaut D, Blanche F, Cameron B, Crouzet J, Debussche L, Rémy E, Vuilhorgne M (1998) Vitamin B12 Biosynthesis in Pseudomonas denitrificans. In: Kräutler B, Arigoni D, Golding BT (eds) Vitamin B12 and B12-Proteins. Wiley — VCH, WeinheimGoogle Scholar
  188. 95a.
    Heinrich HC (ed) (1957) Vitamin B12 and Intrinsic Factor (1st European Symposium) Hamburg. Enke Verlag, Stuttgart; b) Heinrich HC (ed) (1962) Vitamin B12 and Intrinsic Factor (2nd European Symposium) Hamburg. Enke Verlag, StuttgartGoogle Scholar
  189. 96a.
    Mombelli L, Nussbaumer C, Weber H, Müller G, Arigoni D (1981) Biosynthesis of vitamin B12: nature of the volatile fragment generated during formation of the corrin ring system. Proc Natl Acad Sci USA 78: 11CrossRefGoogle Scholar
  190. 96b.
    Nussbaumer C, Imfeld M, Woerner G, Müller G, Arigoni D (1981) Biosynthesis of vitamin B12: mode of incorporation of factor III into cobyrinic acid. Proc Natl Acad Sci USA 78: 9CrossRefGoogle Scholar
  191. 96c.
    Battersby AR, Bushell MJ, Jones C, Lewis NG, Pfenniger A (1981) Biosynthesis of vitamin B12: identity of fragment extruded during ring contraction to the corrin macrocycle. Proc Natl Acad Sci USA 78: 13CrossRefGoogle Scholar
  192. 96d.
    Rasseti V, Pfaltz A, Kratky C, Eschenmoser A (1981) Ring contraction of hydroporphinoid to corrinoid complexes. Proc Natl Acad Sci USA 78: 16CrossRefGoogle Scholar
  193. 97.
    Blanche F, Thibaut D, Debussche L, Hertle R, Zipfel F, Müller G (1993) Parallelen und maßgebliche Unterschiede bei Vitamin-B12-Biosynthesen. Angew Chem 105: 1704CrossRefGoogle Scholar
  194. 98a.
    Scott AI, Roessner CA, Stolowich NJ, Spencer JB, Min C, Ozaki SI (1993) Biosynthesis of vitamin B12. FEBS 331: 105CrossRefGoogle Scholar
  195. 98b.
    Spencer JB, Stolowich NJ, Santander PJ, Pichon C, Kajiwara M, Tokiwa S, Takatori K, Scott AI (1994) Mechanism of the Ring Contraction Step in Vitamin B12 Biosynthesis: The Origin and Subsequent Fate of the Oxygen Functionalities in Precorrin-3x. J Am Chem Soc 116: 4991CrossRefGoogle Scholar
  196. 99a.
    Stevens RV, Beaulieu N, Chan WH, Daniewski A, Takeda T, Waldner A, Williard P, Zutter UJ (1986) Studies on the Synthesis of Vitamin B12. J Am Chem Soc 108: 1039Google Scholar
  197. 99b.
    Stevens RV (1979) Recent Studies on the Synthesis of Vitamin B12. In: Zagalak B, Friedrich W (eds) Vitamin B12. de Gruyter, Berlin, p 119Google Scholar
  198. 100.
    Jacobi PA, Brielmann HL, Hauck SI (1996) Toward the Synthesis of Biologically Important Chlorins, Isobacteriochlorins, and Corrins. Cyclic Enamides from Acteylenic Amides. J Org Chem 61: 5013CrossRefGoogle Scholar
  199. 101a.
    Mulzer J, Riether D (1999) Synthesis of the C-ring fragment of cobyric acid. Tetrahedron Lett 40: 6197CrossRefGoogle Scholar
  200. 101b.
    Mulzer J, List B, Bats JW (1997) Stereocontrolled Synthesis of a Nonracemic Vitamin B12 A-B Semicorrin. J Am Chem Soc 119: 5512CrossRefGoogle Scholar
  201. 102.
    Bonnett R (1982) Reactions of the Corrin Macrocycle. Dolphin D (ed) Vitamin B12 Vol I. Wiley, New York, p 201Google Scholar
  202. 103a.
    Lewis NJ, Nussberger R, Kräutler B, Eschenmoser A (1983) 5,15-Bisnorcobester: eine unvorhergesehene Bildungsweise. Angew Chem 95: 744CrossRefGoogle Scholar
  203. 103b.
    Nussbaumer C, Arigoni D (1983) Einfacher Zugang zu 5-Nor-, 15-Nor- und 5,15-Bisnorcobester. Angew Chem 95: 746CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2002

Authors and Affiliations

  • F.-P. Montforts
    • 1
  • M. Glasenapp-Breiling
    • 1
  1. 1.Institut für Organische ChemieUniversität BremenBremenGermany

Personalised recommendations