Skip to main content

Zusammenfassung

Modellvorstellungen zur Ätiopathogenese der menschlichen Depression gehen heute weitgehend übereinstimmend von einem Stress-Diathese-Modell aus. Dieses Konzept beinhaltet die Wechselwirkung zwischen belastender Erfahrung (Stress) und Krankheitsveranlagung (Diathese) und betrachtet depressive Störungen als Folge eines komplexen Zusammenspiels von belastenden Umweltereignissen, genetischer und aktueller physiologischer Prädisposition und früheren Lernerfahrungen. Dieses Modell postuliert, dass Stress, Lebensereignisse und Lernerfahrungen sich in biologischen Veränderungen niederschlagen und die menschliche Psyche sich in biologischen/ biochemischen Vorgängen im Zentralnervensystem manifestiert. Die umwälzenden Fortschritte der modernen Neurobiologie haben zusammen mit den Entwicklungen in der Psychopharmakologie zu neuen molekular und neuroanatomisch orientierten Konzepten über die Pathomechanismen der.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • ABRAMSON LY, SELIGMAN MEP, TEASDALE JD (1978) Learned helplessness in humans: critique and reformulation. J Abnorm Psychol 87: 49–74

    PubMed  CAS  Google Scholar 

  • ADRIEN J, DUGOVIC C, MARTIN P (1991) Sleep-wake-fulness patterns in the helpless rat. Physiol Behav 49: 257–262

    PubMed  CAS  Google Scholar 

  • ALTAR CA (1999) Neurotrophins and depression. Trends Pharmacol Sci 20: 59–61

    PubMed  CAS  Google Scholar 

  • ARENDT J (1998) Biological rhythms: the science of chronobiology. J Roy Coll Phys Lond 32: 27–35

    CAS  Google Scholar 

  • Brown E, Rush AJ, Mcewen BS (1999) Hippo-campal remodelling and damage by cortico-steroids: implications for mood disorders. Neuropsychopharmacology 21:474–484

    Google Scholar 

  • Burrows HL, Nakajima M, Lesh JS, Goosens KA, Samuelson LC, Inui A, Camper SA, Seasholtz AP (1998) Excess corticotropin-releasing hormone-binding protein in the hypothalamicpituitary-adrenal axis in transgenic mice. J Clin Invest 101: 1439-1447

    PubMed  CAS  Google Scholar 

  • CAPPELIEZ P, MOORE E (1990) Effects of lithium on an amphetamine animal model of bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 14: 347–358

    PubMed  CAS  Google Scholar 

  • D’AQUILA P, NEWTON J, WILLNER P (1997) Diurnal variation in the effect of chronic mild stress on sucrose intake and preference. Physiol Behav 62: 421–426

    PubMed  Google Scholar 

  • DUMAN RS, HENINGER GR, NESTLER EJ (1997) A molecular and cellular theory of depression. Arch Gen Psychiatry 54: 597–606

    PubMed  CAS  Google Scholar 

  • EDWARDS E, JOHNSON J, ANDERSON D, TURANO P, HENN FA (1986) Neurochemical and behavioral consequences of mild uncontrollable shock: effects of PCPA. Pharmacol Biochem Behav 25: 415–421

    PubMed  CAS  Google Scholar 

  • EDWARDS E, HARKINS K, WRIGHT G, HENN FA (1990a) 5-HT1b receptors in an animal model of depression. Neuropharmacol 30: 101–105

    Google Scholar 

  • EDWARDS E, HARKINS K, WRIGHT G, HENN FA (1990b) Effects of bilateral adrenalectomy on the induction of learned helpless behavior. Neuropsychopharmacol 3: 109–114

    CAS  Google Scholar 

  • EDWARDS E, HARKINS K, WRIGHT G, HENN FA (1991) Modulation of [3H]paroxetine binding to the 5-hydroxytryptamine uptake site in an animal model of depression. J Neurochem 56: 1581–1586

    PubMed  CAS  Google Scholar 

  • GESSA GL, PANI L, FADDA P, FRATTA W (1995) Sleep deprivation in the rat: an animal model of ma-nia. EurNeuropsychopharmacol [Suppl]: 89–93

    Google Scholar 

  • GOULD E, TANAPAT P (1999) Stress and hippo-campal neurogenesis. Biol Psychiatry 46: 1472–1479

    PubMed  CAS  Google Scholar 

  • GREENBERG L, EDWARDS E, HENN FA (1989) Dexa-methason supressior test in helpless rats. Biol Psych 26: 530–532

    CAS  Google Scholar 

  • HENINGER GR, CHARNEY DS (1981) Mechanisms of action of antidepressant treatments: implications for the etiology and treatment of depressive disorders. In: MELTZER HY (ed) Psycho-pharmacology: the third generation of progress. Raven Press, New York, pp 535–544

    Google Scholar 

  • HENN FA, JOHNSON J, EDWARDS E, ANDERSON D (1985) Melancholia in rodents: neurobiology and pharmacology. Psychopharmacol Bull 21: 443–446

    CAS  Google Scholar 

  • HENN FA, EDWARDS E, MUNEYYIRCI J (1993) Animal models of depression. Clin Neurosci 1: 152–156

    Google Scholar 

  • HOLSBOER F (1999) The rationale for corticotropin-releasing hormone receptor (CRH-R) antagonists to treat depression and anxiety. J Psychiatr Res 33: 181–214

    PubMed  CAS  Google Scholar 

  • IKoNoMov OC, MANJI HK (1999) Molecular mechanisms underlying mood stabilisation in manic-depressive illness: the phenotype challenge. Am J Psychiatry 156: 1506–1514

    PubMed  CAS  Google Scholar 

  • JACOBS BL, VAN PRAAG H, GAGE FH (2000) Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol Psychiatry 5: 262–269

    PubMed  CAS  Google Scholar 

  • KAFITZ KW, ROSE CR, THOENEN II et al. (1999) Neurotrophin-evoked rapid excitation through TrkB receptors. Nature 401: 918–921

    PubMed  CAS  Google Scholar 

  • KELLY JP, WRYNN AS, LEONARD BE (1997) The olfac-tory bulbectomized rat as a model of depres-sion: an update. Pharmacol Tiler 74: 299–316

    CAS  Google Scholar 

  • KRAiMER M, HIEMKE C, FUCHS E (1999) Chronic psychosocial stress and antidepressant treatment in tree shrews: time-dependent behavioral and endocrine effects. Neurosci Biobehav Rev 23: 937–947

    Google Scholar 

  • MARTIN JV, EDWARDS E, JOHNSON JO, HENN FA (1990) Monoamine receptors in an animal model of affective disorder, J Neurochem 55: 1142–1148

    PubMed  CAS  Google Scholar 

  • NIBUYA M, NESTLER EJ, DUMAN RS (1996) Chronic antidepressant administration increases the expression of cAMP response element-binding protein (CREB) in rat hippocampus. J Neurosci 16: 2365–2372

    PubMed  CAS  Google Scholar 

  • PEPIN MC, POTHIER F, BARDEN N (1992) Impaired type II glucocorticoid-receptor function in mice bearing antisense RNA transgene. Nature 355: 725–728

    PubMed  CAS  Google Scholar 

  • PETTY F, SHERMAN AD (1981) A pharmacologically pertinent animal model of mania. J Affect Disord 3: 381–387

    PubMed  CAS  Google Scholar 

  • PORSOLT RD (2000) Animal models of depression: utility for transgenic research. Rev Neurosci 11: 53–58

    PubMed  CAS  Google Scholar 

  • SELIGMAN MEP, MAIER SF (1967) Failure to escape traumatic shock. J Exp Psycho’ 74: 1–9

    CAS  Google Scholar 

  • SHERMAN AD SACQUITNE. JL, PETTY F (1982) Specificity of the learned helplessness model of depression. Pharmacol Biochem Behav 16: 449–154

    PubMed  Google Scholar 

  • SIUCIAK JA, LEWIS DR, WIEGAND SJ et al. (1997) Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol Biochem Behav 56: 131–137

    PubMed  CAS  Google Scholar 

  • SMITH MA, MAKING S, KVETNANSKY R, POST RM (1995) Effects of stress on neurotrophic factor expression in the rat brain. Ann NY Acad Sci 771: 234–239

    PubMed  CAS  Google Scholar 

  • STENZEL-POORE MP, HEINRICHS SC, RIVEST S, KOOB GF, VALE WW (1994) Overproduction of corticotropin-releasing factor in transgenic mice: a genetic model of anxiogenic behavior. J Neurosci 14: 2579–2548

    Google Scholar 

  • TIMPL P, SPANAGEL R, SILLABER I et al. (1998) Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nature Genet 19: 162–166

    PubMed  CAS  Google Scholar 

  • TRONCHE F, KELLENDONK C, KRETZ O, GASS P, ANLAG K, ORBAN PC, BOCK R, KLEIN R, SCHÜTZ G (1999) Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nature Genet 23: 99–103

    PubMed  CAS  Google Scholar 

  • WILLNER P (1991) Animal models as simulations of depression. Trends Pharmacol Sci 12: 131–136

    PubMed  CAS  Google Scholar 

  • WILLNER P (1997) Validity, Reliability and untility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacol 134: 319–329

    CAS  Google Scholar 

  • ALEXANDER GE, CRUTCHER MD, DELONG MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, „prefrontal“ and „limbic` functions. Prog Brain Res 85: 119–146

    PubMed  CAS  Google Scholar 

  • ALLARD P, NORLEN M (1997) Unchanged density of caudate nucleus dopamine uptake sites in depressed suicide victims. J Neural Transm 104: 1353–1360

    PubMed  CAS  Google Scholar 

  • ARANGO V, ERNSBERGER P, SUED AP, MANNA- (1993) Quantitative autoradiography of alpha 1- and alpha 2-adrenergic receptors in the cerebral cortex of controls and suicide victims. Brain Res 630: 271–282

    PubMed  CAS  Google Scholar 

  • ARORA RC, MELTZER HY (1989) Serotonergic measures in the brains of suicide victims: 5-HT2 binding sites in the frontal cortex of suicide victims and control subjects. Am J Psychiatry 146: 730–736

    PubMed  CAS  Google Scholar 

  • ARRANz B, ERIKSSON A, MELLERUP E, PLENGE P, MAR-CussON J (1994) Brain 5-HT1A, 5-HT1D, and 5-HT2 receptors in suicide victims. Biol Psychiatry 35: 457–463

    PubMed  CAS  Google Scholar 

  • BACHUS SE, HYDE TM, Axa M, WEICKERT CS, VAta-TER MP, KLRINMAN JE (1997) Neuropathology of suicide. A review and an approach. Ann NY Acad Sei 836: 201–219

    CAS  Google Scholar 

  • BAUMANN B, DANOS P, DIEKMANN S, KRELL D. BIELAU H, GERETSEGGER C, WURTHMANN C, BERNSTEINHG, BOGERTS B (1999) Tyrosine hydroxylase immunoreactivity in the locus coeruleus is reduced in depressed non-suicidal patients but normal in depressed suicide patients. Eur Arch Psychiatry Clin Neurosci 249: 212–219

    PubMed  CAS  Google Scholar 

  • BECKMANN H, JAKOB H (1991) Prenatal disturbances of nerve cell migration in the entorhinal region: a common vulnerability factor in functional psychoses? J Neural Transm [Gen Sect] 84: 155–164

    CAS  Google Scholar 

  • BIF:GON A, F1L’LDUST S (1992) Reduced tyrosine hydroxylase immunoreactivity in locus coeroleus of suicide victims. Synapse 10: 79–82

    Google Scholar 

  • BIRK.MAYER W, RIEDERER P (1975) Biochemical post-mortem findings in depressed patients. J Neural Transm 37: 95–109

    CAS  Google Scholar 

  • BLIGH-GLOVER W, KOL.I.I TN, SHAPIRO-KLLNANE L, DILLEY GE, FRIEDMAN L, BALRAJ E, RAJKOWSKA G, STOCKMEIER CA (2000) The serotonin transporter in the midbrain of suicide victims with major depression. Biol Psychiatry 47: 1015–1024

    PubMed  CAS  Google Scholar 

  • BOURNE HR, BUNNEY WE Jr, COLBURN RW, DAVIS JM, DAVIS JN, SHAW DM, COPPEN Ai (1968) Noradrenaline, 5-hydroxytrypta mine, and 5-hydroxyindoleacetic acid in hindbrains of suicidal patients. Lancet ii: 805–808

    Google Scholar 

  • BowuEN C, CHEETHAM SC, LOWrHER S, KATONA CL, CROMPTON MR, HORTON RW (1997a) Dopamine uptake sites, labelled with 3H1GBR12935, in brain samples from depressed suicides and controls. Eur Neuropsychopharmacol 7: 247–252

    Google Scholar 

  • BOWDEN C, THEODOROLI AE, CHEETHAM SC, LOWTHER S, KATONA CL, CROMPTON MR, HORTON KW (1997b) Dopamine Dl and D2 receptor binding sites in brain samples from depressed suicides and controls. Brain Res 752: 227–33

    CAS  Google Scholar 

  • BROWN R, COLTER N, CORSELLIS JA, CROW TJ, FRITH CD, JAGOE R, JOHNSTONE EC, MARSH L (1986) Postmortem evidence of structural brain changes in schizophrenia. Differences in brain weight, temporal horn area, and parahippocampal gyrus compared with affective disorder. Arch Gen Psychiatry 43: 36–42

    PubMed  CAS  Google Scholar 

  • BUNNEY WE, DAVIS JM (1965) Norepinephrine in depressive reactions. A review. Arch Gen Psychiatry 13: 483–494

    PubMed  CAS  Google Scholar 

  • BURNET PW, HARRISON PJ (2000) Substance P (NK1) receptors in the cingulate cortex in unipolar and bipolar mood disorder and schizophrenia. Biol Psychiatry 47: 80–83

    PubMed  CAS  Google Scholar 

  • CABERLOTTo L, Hum YL (1999) Reduced neuropeptide Y mRNA expression in the prefrontal cortex of subjects with bipolar disorder. Neuroreport 10: 1747–1750

    PubMed  CAS  Google Scholar 

  • CALLADO LF, MEANA JJ, GRIJALBA B, PAZOS A, SASTRE M, GARCIA-SEVILLA JA (1998) Selective increase of alpha2A-adrenoceptor agonist binding sites in brains of depressed suicide victims. J Neurochem 70: 1114–1123

    PubMed  CAS  Google Scholar 

  • COPPEN A, SHAW DM, MAI.LESON A, ECCLESTON E, GINDY G (1965) Tryptamine metabolism in depression. Br J Psychiatry 111: 993–998

    CAS  Google Scholar 

  • CHEETHAM SC, CROMPTON MR, KATONA CL, HORTON RW (1988a) Brain 5-HT2 receptor binding sites in depressed suicide victims. Brain Res 443: 272–280

    CAS  Google Scholar 

  • CHEETHAM SC, CROMPTON MR, KATONA CL, PARKER SJ, HORTON RW (1988b) Brain GABAA/benzodiazepine binding sites and glutamic acid decarboxylase activity in depressed suicide victims. Brain Res 460: 114–123

    CAS  Google Scholar 

  • COULL MA, LOWTHER S, KATONA CL, HORTON RW (2000) Altered brain protein kinase C in depression: a post-mortem study. Eur Neu Neuropsychopharmacol 10: 283–288

    CAS  Google Scholar 

  • COWBURN RF, MARCUSSON JO, ERIKSSON A, WIEHAGER B, O’NEILL C (1994) Adenylyl cyclase activity and G-protein subunit levels in postmortem frontal cortex of suicide victims. Brain Res 633: 297–304

    PubMed  CAS  Google Scholar 

  • CROSS JA, CHEETHAM SC, CROMPTON MR, KATONA CL, HORTON RW (1988) Brain GABAB binding sites in depressed suicide victims. Psychiatry Res 26: 119–129

    PubMed  CAS  Google Scholar 

  • CUMMINGS JL (1992) Depression and Parkinson’s disease: a review. Am J Psychiatry 149: 443–454

    PubMed  CAS  Google Scholar 

  • DF. PAERMENTIER F, CHEETHAM SC, CROMPTON MR, KATONA CL, HORTON RW (1990) Brain betaadrenoceptor binding sites in antidepressant-free depressed suicide victims. Brain Res 525: 71–77

    PubMed  Google Scholar 

  • DE PAERMENTIER F, MAUGER JM, LOWTHER S, CROMPTON MR, KATONA CL, HORTON RW (1997) Brain alpha-adrenoceptors in depressed suicides. Brain Res 757: 60–68

    PubMed  CAS  Google Scholar 

  • DREVETS WC, ONGUR D, PRICE JL (1998) Neuro-imaging abnormalities in the subgenual prefrontal cortex: implications for the pathophysiology of familial mood disorders. Mol Psychiatry 3: 220–226, 190–191

    Google Scholar 

  • GABII.ONDO AM, MEANA JJ, GARCIA-SEVILLAJA (1995) Increased density of mu-opioid receptors in the postmortem brain of suicide victims. Brain Res 682: 245–250

    Google Scholar 

  • GARCIA-SEVILLA JA, MEANA JJ, BARTUREN F, PAZOS A (1992) Alpha 2-adrenoceptors in the brain of depressed suicide victims. Clin Neuropharmacol 15 [Suppl 11 Pt A: 321A–322A

    Google Scholar 

  • GARCIA-SEVILLA JA, ESCRIBA PV, OZAITA A, LA IIARPE R, WALZER C, EYTAN A, GUIMON J (1999) Up-regulation of immunolabeled alpha 2A-adrenoceptors, Gi coupling proteins, and regulatory receptor kinases in the prefrontal cortex of depressed suicides. J Neurochem 72: 282–291

    Google Scholar 

  • GONZALEZ AM, PASCUAL j, MEANA JJ, BARTUREN F, DEL ARCO C, PAZOS A, GARCIA-SEVILLA JA (1994) Autoradiographic demonstration of increased alpha 2-adrenoceptor agonist binding sites in the hippocampus and frontal cortex of depressed suicide victims. J Neurochem 63: 256265

    Google Scholar 

  • GROSS-ISSEROFF R, DILLON KA, ISRAELI M, BIEGON A (1990) Regionally selective increases in mu opioid receptor density in the brains of suicide victims. Brain Res 530: 312–316

    PubMed  CAS  Google Scholar 

  • GROSS-ISSEROFF R, BIEGON A, VOET H, WEIZMAN A (1998) The suicide brain: a review of postmortem receptor/transporter binding studies. Neurosci Biobehav Rev 22: 653–661

    PubMed  CAS  Google Scholar 

  • HANKOFF LD, PERESS NS (1981) Neuropathology of the brain stem in psychiatric disorders. Biol Psychiatry 16: 945–952

    PubMed  CAS  Google Scholar 

  • HARRO J, MARCUSSON J, ORELAND L (1992) Altera-tions in brain cholecystokinin receptors in suicide victims. Eur Neuropsychopharmacol 2: 57–63

    PubMed  CAS  Google Scholar 

  • HONER WG, FALKAI P, CHEN C, ARANGO V, MANN JJ, DWORK AJ (1999) Synaptic and plasticity-asso-ciated proteins in anterior frontal cortex in severe mental illness. Neuroscience 91: 1247–1255

    PubMed  CAS  Google Scholar 

  • HORTON RW (1992) Che neurochemistry of depression: evidence derived from studies of post-mortem brain tissue. Mol Aspects Med 13: 191–203

    PubMed  CAS  Google Scholar 

  • HRUINA PD, DEMEI’ER E, Vu TB, SoTON 1 P, PALKO1TS M (1993) 5-HT uptake sites and 5-HT2 receptors in brain of antidepressant-free suicide victims/depressives: increase in 5–1-112 sites in cortex and amygdala. Brain Res 614: 37–44

    Google Scholar 

  • IIUANG YY, GRAILHE R, ARANGO V, HEN R, MANN JJ (1999) Relationship of psychopathology to the human serotonin1B genotype and receptor binding kinetics in postmortem brain tissue. Neuropsychopharmacology 21: 238–246

    Google Scholar 

  • HUCKS D, LOWTHER S, CROMPTON MR, KATONA CL, HORTON RW (1997) Corticotropin-releasing factor binding sites in cortex of depressed suicides. Psychopharmacology (Berl) 134: 174–178

    CAS  Google Scholar 

  • HURD YL, HERMAN MM, HYDE TM, BIGELOW LB, WEíNBERGER DR, KLEINMAN JE (1997) Prodynor-phin mRNA expression is increased in the patch vs matrix compartment of the caudate nucleus in suicide subjects. Mol Psychiatry 2: 495–500

    PubMed  CAS  Google Scholar 

  • JOHNSTON-WILSON NL, Sims CD, HOFMANN JP, ANDERSON L, SHORE AD, TORREY EF, YOLKEN RH (2000) Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. The Stanley Neuropathology Consortium. Mol Psychiatry 5: 142–149

    PubMed  CAS  Google Scholar 

  • JoeGENSEN OS, RIEDERE:RP (1985) Increased synaptic markers in hippocampus of depressed patients. J Neural Transm 64: 55–66

    Google Scholar 

  • KAUHANEN J, KAItvONEN MK, PESONEN U, KOULU M, TUOMAINEN TP, UUSITUPA Ml, SALONEN JT (2000) Neuropeptide Y polymorphism and alcohol consumption in middle-aged men. Am J Med Genet 93: 117–121

    PubMed  CAS  Google Scholar 

  • KLIMEK V, STOCICMEIER C, OVERHOLSER J, MELTZER HY, KALKA S, DILLEY G, ORDWAY GA (1997) Reduced levels of norepinephrine transporters in the locus coeruleus in major depression. J Neurosci 17: 8451–8458

    PubMed  CAS  Google Scholar 

  • KLIMEK V, RAJKOWSKA G, LUKER SN, DILLEY G, MELTZER HY, OVERHOLSER JC, STOCKMEIER CA, ORDWAY GA (1999) Brain noradrenergic receptors in major depression and schizophrenia. Neuropsychopharmacology 21: 69–81

    PubMed  CAS  Google Scholar 

  • LAWRENCE KM, DE PAERMENTIER F, CHEETHAM SC, CROMPTON MR, KATONA CL, HORTON RW (1990) Brain 5-HT uptake sites, labelled with [3Hl-paroxetine, in antidepressant-free depressed suicides. Brain Res 526: 17–22

    PubMed  CAS  Google Scholar 

  • LAWRENCE KM, KANAGASUNDARAM M, LOWTHER S, KATONA CL, CROMPTON MR, HORTON RW (1998) [3H] imiprarnine binding in brain samples from depressed suicides and controls: 5-HT uptake sites compared with sites defined by desmethylimipramine. J Affect Disord 47: 105–112

    PubMed  CAS  Google Scholar 

  • LESCH KP, BENGEL D, HEILS A, SABOL SZ, GREENBERG BD, PETRI S, BENJAMIN J, MULLER CR, ILsMER DI I, MURPHY DL (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274: 1527–1531

    PubMed  CAS  Google Scholar 

  • LITTLE KY, RANG J, GILMORE J, PATEL A, CLARK TB (1997) Lack of pineal beta-adrenergic receptor alterations in suicide victims with major depression. Psychoneuroendocrinology 22: 53–62

    PubMed  CAS  Google Scholar 

  • LOWTHER S, DE PAERMENTIER F, CROMPTON MR, KATONA CL, HORTON RW (1994) Brain 5-HT2 receptors in suicide victims: violence of death, depression and effects of antidepressant treatment. Brain Res 642: 281–289

    PubMed  CAS  Google Scholar 

  • LOWTHER S, CROMPTON MR, KATONA CL (1996) GTP gamma S and forskolin-stimulated adenylyl cyclase activity in post-mortem brain from depressed suicides and controls. Mol Psychiatry 1: 470–477

    PubMed  CAS  Google Scholar 

  • LOWTHER S, DE PAERMENTIER F, CIIEETHAM SC, CROMPTON MR, KATONA CL, HORTON RW (1997a) 5-HT1A receptor binding sites in post-mortem brain samples from depressed sui-cides and controls. J Affect Disord 42: 199–207

    CAS  Google Scholar 

  • LOWTHER S, KATONA CL, CROMPTON MR, HORTON RW (1997b) 5-IIT1D and 5-IIT1E/1F binding sites in depressed suicides: increased 5-HT1D binding in globus pallidus but not cortex. Mol Psychiatry 2: 314–321

    CAS  Google Scholar 

  • MACLEAN PD (1952) Some psychiatric implications of physiologic studies on frontotemporal portion of limbic system (visceral brain). Electroencephalogr Clin Neurophysiol 4: 407–418

    PubMed  CAS  Google Scholar 

  • MALISON RT, PRICE LH, BERMAN R, VAN DYCK CH, PELTON GH, CARPENTER L, SANACORA G, OWENs MJ, NEMEROFF CB, RAJEEVAN N, BALDWIN RM, SEIBYL JP, INNIS RB, CHARNEY DS (1998) Reduced brain serotonin transporter availability in major depression as measured by [1231]-2 beta-carbomethoxy-3 beta-(4-iodophenyl)tropane and single photon emission computed tomography. Biol Psychiatry 44: 1090–1098

    PubMed  CAS  Google Scholar 

  • MANN JJ (1999) Role of the serotonergic system in the pathogenesis of major depression and suicidal behavior. Neuropsychopharmacology 21 [Suppl 2]: 995–1055

    Google Scholar 

  • MANN JJ, STANLEY M, MCBRIDE PA, MCEWEN BS (1986) Increased serotonin2 and beta-adrenergic receptor binding in the frontal cortices of suicide victims. Arch Gen Psychiatry 43: 954–959

    PubMed  CAS  Google Scholar 

  • MANN JJ, ARANGO V, I IENTELEFF RA, LAGATTUTA TF, WONG DT (1996) Serotonin 5-HT3 receptor binding kinetics in the cortex of suicide victims are normal. J Neural Transm 103: 165–171

    PubMed  CAS  Google Scholar 

  • MANN JJ, HUANG YY, UNDERWOOD MD, KASSIR SA, OPPENHEIM S, KELLY TM, DWORK AJ, ARANGO V (2000) A serotonin transporter gene promoter polymorphism (5-HTTLPR) and prefrontal cortical binding in major depression and suicide. Arch Gen Psychiatry 57: 729–738

    PubMed  CAS  Google Scholar 

  • MATSUBARA S, AROSA RC, MELTZER HY (1991) Ser-otonergic measures in suicide brain: 5-HT1A binding sites in frontal cortex of suicide vic-tims. J Neural Transm [Gen Sect] 85: 181–194

    CAS  Google Scholar 

  • MEANA JJ, GARCIA-SEVILLA JA (1987) Increased al-pha 2-adrenoceptor density in the frontal cortex of depressed suicide victims. J Neural Transm 70: 377–381

    PubMed  CAS  Google Scholar 

  • MEANA JJ, BARTUREN F, GARCIA-SEVILLA JA (1992) Alpha 2-adrenoceptors in the brain of suicide victims: increased receptor density associated with major depression. Biol Psychiatry 31: 471–490

    PubMed  CAS  Google Scholar 

  • MIGUEL-HIDALGO JJ, BAUCOM C, DILLEY G, OVERHOLSER JC, MELTZER HY, STOCKMEIER CA, RAJKOWSKA G (2000) Glial fibrillary acidic protein immunoreactivity in the prefrontal cortex distinguishes younger from older adults in major depressive disorder. Biol Psychiatry 48: 861873

    Google Scholar 

  • NEMEROFF CB, OWENS MJ, BíSSETTE G, ANDORN AC, STANLEY M (1988) Reduced corticotropin releasing factor binding sites in the frontal cortex of suicide victims. Arch Gen Psychiatry 45: 577–579

    CAS  Google Scholar 

  • NOWAK G, ORDWAY GA, PAUL IA (1995) Alterations in the N-methyl-D-aspartate (NMDA) receptor complex in the frontal cortex of suicide victims. Brain Res 675: 157–164

    PubMed  CAS  Google Scholar 

  • ONGUR D, DREVETS WC, PRICE JL (1998) Glial reduction in the subgenual prefrontal cortex in mood disorders, Proc Natl Acad Sci USA 95:13290–13295

    PubMed  CAS  Google Scholar 

  • ORDWAY GA (1997) Pathophysiology of the locus coeruleus in suicide. Ann NY Acad Sci 836:233-252

    PubMed  CAS  Google Scholar 

  • ORDWAY GA, WIDDOWSON PS, SMITH KS, HALARIS A (1994) Agonist binding to alpha 2-adrenocep-tors is elevated in the locus coeruleus from victims of suicide. J Neurochem 63: 617–624

    PubMed  CAS  Google Scholar 

  • ORDWAY GA, STOCKMEIER CA, MELTZER HY, OVERHOLSER JC, JACONETTA S, WIDDOWSON PS (1995) Neuropeptide Y in frontal cortex is not altered in major depression. J Neurochem 65: 1646–1650

    PubMed  CAS  Google Scholar 

  • ORDWAY GA, FARLEYJT, DILLEY GE, OVERHOLSERJC, MELTZER HY, BALRAJ EK, STOCKMEIER CA, KLIMEK V (1999) Quantitative distribution of monoamine oxidase A in brainstem monoamine nuclei is normal in major depression. Brain Res 847: 71–79

    PubMed  CAS  Google Scholar 

  • OZAWA H, GSELL W, FROLICH L, ZOCHLING R, PANTUCEK F, BECKMANN H, RIEDERER P (1993) Imbal-ance of the Gs and Gi/o function in postmortem human brain of depressed patients. J Neural Transm [Gen Sect] 94: 63–69

    CAS  Google Scholar 

  • PACHECO MA, STOCKMEIER C, MELTZER HY, OVERHOI.SER JC, DILLEY GE, JoPE RS (1996) Alterations in phosphoinositide signaling and G-protein levels in depressed suicide brain. Brain Res 723: 37–45

    PubMed  CAS  Google Scholar 

  • PAPEZ JW (1937) A proposed mechanism of emo-tion. Arch Neurol Psychiatry 38: 725-743

    Google Scholar 

  • PARE CM, YEUNG DP, PRICE K, STACEY RS (1969) 5-hydroxytryptamine, noradrenaline, and dopamine in brainstem, hypothalamus, and caudate nucleus of controls and of patients committing suicide by coal-gas poisoning. Lancet ii: 133–135

    Google Scholar 

  • PARKER G (2000) Classifying depression: should paradigms lost be regained? Am J Psychiatry 157: 1195–1203

    PubMed  CAS  Google Scholar 

  • PERRY RH, DOCKRAY GJ, DIMALINE R, PERRY EK, BLESSED G, TOMLINSON BE (1981) Neuropep-tides in Alzheimer’s disease, depression and schizophrenia. A post mortem analysis of vasoactive intestinal peptide and cholecystokinin in cerebral cortex. J Neurol Sei 51: 465472

    Google Scholar 

  • PURBA JS, HOOGENDIJK WJ, HOFMAN MA, SWAAB DF (1996) Increased number of vasopressin-and oxytocin-expressing neurons in the paraventricular nucleus of the hypothalamus in depression. Arch Gen Psychiatry 53: 137–143

    PubMed  CAS  Google Scholar 

  • RAADSHEER FC, HOOGENDIJK WJ, STAM FC, TILDERS FJ, SWAAB DF (1994) Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology 60: 436–444

    PubMed  CAS  Google Scholar 

  • RAADSIIEER FC, VAN HEERIKHUIZE JJ, LUCASSEN PJ, HOOGENDIJK WJ, TILDERS FJ, SWAAB DF (1995) Corticotropin-releasing hormone mRNA levels in the paraventricular nucleus of patients with Alzheimer’s disease and depression. Am J Psychiatry 152: 1372–1376

    Google Scholar 

  • RAJKOWSKA G, MIGUEL-HIDALGO JJ, WEI J, DILLEY G, PITTMAN SD, MELTZER HY, OVERHOLSERJC, ROTH BL, STOCKMEIER CA (1999) Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 45: 1085–1098

    PubMed  CAS  Google Scholar 

  • REACH JS, LI PP, WARSH JJ, KISH SJ, YOUNG LT (1999) Reduced adenylyl cyclase immunolabeling and activity in postmortem temporal cortex of depressed suicide victims. J Affect Disord 56: 141–151

    Google Scholar 

  • RESSLER KJ, NEMEROFE CB (1999) Role of norepinephrine in the pathophysiology and treatment of depression. Biol Psychiatry 46: 1219–1233

    PubMed  CAS  Google Scholar 

  • RIEDERER P, GSILi. W, CAI.zA L, FRANZEK E, Jt1NOKUNz G, JELLINGER K, REYNOLDS GP, CROW T, CRUZSANCHEZ FF, BECKMANN H (1995) Consensus on minimal criteria of clinical and neuropathological diagnosis of schizophrenia and affective disorders for post mortem research. Report from the European Dementia and Schizophrenia Network (BIOMED I). J Neural Transm [Gen Sect] 102: 255–264

    CAS  Google Scholar 

  • ROCHET T, TONON MC, KoPP N, VAUDRY H, MIACHON S (1998) Evaluation of endozepine-like immunoreactivity in the frontal cortex of suicide victims. Neuroreport 9: 53–56

    CAS  Google Scholar 

  • ROSEL P, ARRANZ B, SAN L, VALLEJO J, MANUEL CRESPO J, URRETAVIZCAYA M, NAVARRO MA (2000) Altered 5-HT(2A) binding sites and second messenger inositol trisphosphate (IP(3)) levels in hippo-campus but not in frontal cortex from depressed suicide victims. Psychiatry Res 99: 173–181

    PubMed  CAS  Google Scholar 

  • RUPNIAK NM, KRAMER MS (1999) Discovery of the antidepressant and anti-emetic efficacy of substance P receptor (NK1) antagonists. Trends Pharmacol Sei 20: 485–490

    CAS  Google Scholar 

  • SHAH SA, DoRAISWAMY PM, HUSAIN MM, ESCALONA PR, NA C, FIGIEI. GS, PATTERSON LJ, ELI.INWOOD EH JR, McDoNAI.D WM, BoYKO OB et al. (1992) Posterior fossa abnormalities in major depression: a controlled magnetic resonance imaging study. Acta Psychiatr Scand 85: 474–479

    PubMed  CAS  Google Scholar 

  • SHAW DM, CAMPS FE, ECCLESI’ON EG (1967) 5-Hydroxytryptamine in the hind-brain of depressive suicides. Br J Psychiatry 113: 1407–1411

    PubMed  CAS  Google Scholar 

  • SHERIF F, MARCUSSON J, ORELAND L (1991) Braingamma-aminobutyrate transaminase and monoamine oxidase activities in suicide victims. Eur Arch Psychiatry Clin Neurosci 241: 139–144

    PubMed  CAS  Google Scholar 

  • SCIIILDKRAIT JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 122: 509–522

    Google Scholar 

  • STANLEY M. MANN JJ (1983) Increased serotonin-2 binding sites in frontal cortex of suicide victims. Lancet is 214–216

    Google Scholar 

  • STANLEY M, VIRGILIO J, GERSHON S (1982) Tritiated imipramine binding sites are decreased in the frontal cortex of suicides. Science 216: 1337–1339

    PubMed  CAS  Google Scholar 

  • STECKLER T, HOLSBOER F, REUL JIM (1999) Glucocorticoids and depression. Baillieres Best Pract Res Clin Endocrinol Metab 13: 597–614

    PubMed  CAS  Google Scholar 

  • STOCKMEIER CA, SHAPIRO LA, HAYCOCK JW, THOMPSON PA, LowY MT (1996) Quantitative subregional distribution of serotoninlA receptors and serotonin transporters in the human dorsal raphe. Brain Res 727: 1–12

    PubMed  CAS  Google Scholar 

  • STOCKMEIER CA, DILLEY GE, SHAPIRO LA, OVERJIOLSER JC, THOMPSON PA, MELTZER HY (1997) Serotonin receptors in suicide victims with major depression. Neuropsychophannacology 16: 162–173

    CAS  Google Scholar 

  • STOCKMEIER CA, SHAPIRO LA, DILLEY GE, KoLLt TN, FRIEDMAN L, RAJKOwsKA G (1998) Increase in serotonin-1A autoreceptors in the midbrain of suicide victims with major depression-postmortem evidence for decreased serotonin activity. J Neurosci 18: 7394–7401

    PubMed  CAS  Google Scholar 

  • SUMIYOSHI T, STOCKMEIER CA, CIVERI1OLSER JC, THOMPSON PA, MELTZER HY (1995) Dopamine D4 receptors and effects of guanine nucleotides on [3Hlraclopride binding in postmortem caudate nucleus of subjects with schizophrenia or major depression. Brain Res 681: 109–16

    PubMed  CAS  Google Scholar 

  • SUNDMAN L, ALLARD P, ERIKSSON A, MARCUSSON J (1997) GARA uptake sites in frontal cortex from suicide victims and in aging. Neuropsychobiology 35: 11–15

    PubMed  CAS  Google Scholar 

  • THIELE TE, MARSH DJ, STE MARIE L, BERNSTEIN IL, PALMITER RD (1998) Ethanol consumption and resistance are inversely related to neuropeptide Y levels. Nature 396: 366–369

    CAS  Google Scholar 

  • THOMAS AJ, FERRIER IN, KYLARIA RN, WooDWARD SA, BALLARD C, OAKLEY A, PERRY RH, O’BRIEN JT (2000) Elevation in late-life depression of intercellular adhesion molecule-1 expression in the dorsolateral prefrontal cortex. Am J Psychiatry 157: 1682–1684

    PubMed  CAS  Google Scholar 

  • VAW’rER MP, HEMPERLY JJ, HYDE TM, BACHUS SE, VANDERPUFrEN DM, HOWARD AL, CANNON-SPOOR HE, MCCOY MT, WEBSTER MJ, KLEINMAN JE, FREED WJ (1998) VASE-containing N-CAM isoforms are increased in the hippocampus in bipolar disorder but not schizophrenia. Exp Neurol 154: 1–11

    Google Scholar 

  • VAWrER MP, HOWARD AL, HYDE TM, KLEINMAN JE, FREED WJ (1999) Alterations of hippocampal secreted N-CAM in bipolar disorder and synaptophysin in schizophrenia. Mol Psychiatry 4: 467–475

    Google Scholar 

  • VIDEBECH P (1997) MRI findings in patients with affective disorder: a meta-analysis. Acta Psychiatr Scand 96: 157–168

    PubMed  CAS  Google Scholar 

  • WEBSTER MJ, VAWTER MP, FREED WJ (1999) Immunohistochemical localization of the cell adhesion molecules Thy-1 and Ll in the human prefrontal cortex patients with schizophrenia, bipolar disorder, and depression. Mol Psychiatry 4: 46–52

    PubMed  CAS  Google Scholar 

  • WluuowsoN PS, ORDwAY GA, HALAIUS AE (1992) Reduced neuropeptide Y concentrations in suicide brain. J Neurochem 59: 73–80

    Google Scholar 

  • ZHU MY, KLIMEK V, DILLEY GE, HAYCOCK JW, STOCKMEIER C, OVERHOLSER JC, MELTZER HY, ORDWAY GA (1999) Elevated levels of tyrosine hydroxylase in the locus coeruleus in major depression. Biol Psychiatry 46: 1275–1286

    PubMed  CAS  Google Scholar 

  • AMADO RG, CHEN ISY (1999) Lentiviral vectors - the promise of gene therapy within reach? Science 285: 674–676

    PubMed  CAS  Google Scholar 

  • ARRANZ MJ, MUNRO j, BIRKETT J, BOLONNA A, MAN-CAMA D, SODHI M, LESCH KP, MEYER JFW, SHAM P, COLLIER DA, MURRAY RIM, KERWIN RW (2000) Pharmacogenetics of clozapine response. Lancet 355: 1615–1616

    PubMed  CAS  Google Scholar 

  • BAKER RA, HERKENHAM M, BRADY LS (1996) Effects of long-term treatment with antidepressant drugs on proopiomelanocortin and neuropeptide Y mRNA expression in the hypothalamic arcuate nucleus of rats. J Neuroendocrinol 8: 337–343

    PubMed  CAS  Google Scholar 

  • BARDEN N (1999) Regulation of corticosteroid receptor gene expression in depression and antidepressant action. J Psychiatry Neurosci 24: 25–39

    PubMed  CAS  Google Scholar 

  • BEAUREGARD M, LEROUX JM, BERGMAN S, ARZOLJMANIAN Y, BEAUDOIN G, BOURGOUIN P, STIP E (1998) The functional neuroanatomy of major depression: an IMRI study using an emotional activation paradigm. Neuroreport 9: 3253–3258

    PubMed  CAS  Google Scholar 

  • BECK CH (1995) Acute treatment with antidepressant drugs selectively increases the expression of c-fos in the rat brain. J Psychiatry Neurosci 20: 25–32

    PubMed  CAS  Google Scholar 

  • BING GY, FILER D, MILLER JC, STONE EA (1991) Noradrenergic activation of immediate early genes in rat cerebral cortex. Brain Res Mol Brain Res 11: 43–46

    PubMed  CAS  Google Scholar 

  • BING G, CHEN S, ZHANG Y, HILLMAN D, STONE EA (1992) Noradrenergic-induced expression of c-fos in rat cortex: neuronal localization. Neurosci Lett 140: 260–264

    PubMed  CAS  Google Scholar 

  • BITER P, DE MONTIGNY C (1999) Serotonin and drug-induced therapeutic responses in major depression, obsessive-compulsive and panic disorders. Neuropsychopharmacology 21 [Suppl 2]: 91S–98S

    Google Scholar 

  • BLOMER U, NALDINI L, VERMA IM, TRONO D, GAGE FH (1996) Applications of gene therapy to the CNS. IIum Mol Genet 5: 1397–1404

    Google Scholar 

  • BONHOMME N, Eseosrro E (1998) Involvement of serotonin and dopamine in the mechanism of action of novel antidepressant drugs: a review. J Clin Psychopharmacol 18: 447–454

    PubMed  CAS  Google Scholar 

  • BOYER PA, SKOINICK P, FossoM LH (1998) Chronic administration of imipramine and citalopram alters the expression of NMDA receptor subunit mRNAs in mouse brain. A quantitative in situ hybridization study. J Mol Neurosci 10: 219–233

    PubMed  CAS  Google Scholar 

  • BUSCIIER R, HERRMANN V, INSEL. PA (1999) Human adrenoceptor polymorphisms: evolving recognition of clinical importance. Trends Pharmacol Sci 20: 94–99

    Google Scholar 

  • CAMERON HA, TANAPAT P, GoULD E (1998) Adrenal steroids and N-methyl-D-aspartate receptor activation regulate neurogenesis in the dentate gyrus of adult rats through a common pathway. Neuroscience 82: 349-354

    PubMed  CAS  Google Scholar 

  • CATALANO M (1999) The challenges of psychopharmacogenetics. Am J Hum Genet 65: 606–610

    PubMed  CAS  Google Scholar 

  • CHALMERS DT, LOPEZ JF, VAZQUEZ DM, AKIL II, WATSON SJ (1994) Regulation of hippocampal 5-HT1A receptor gene expression by dexamethasone. Neuropsychopharmacology 10: 215–222

    PubMed  CAS  Google Scholar 

  • CHAOULOrr F (1995) Regulation of 5-HT receptors by corticosteroids: where do we stand? Fun-dam Clin Pharmacol 9: 219–233

    Google Scholar 

  • CIRELLI C, POMPEIANO M, TONONI G (1996) Neuro-nal gene expression in the waking state: a role for the locus coeruleus. Science 274: 1211–1215

    PubMed  CAS  Google Scholar 

  • CORTI O, HORELLOU P, COLIN P, CATrANEO E, MALLET U (1996) Intracerebral tetracycline-dependent regulation of gene expression in grafts of neural precursors. NeuroReport 7: 1655–1659

    CAS  Google Scholar 

  • DA.MBERG M, EKOLOM J, ORELAND L (1999) Chronic pharmacological treatment with certain anti-depressants alters the DNA-binding activity of transcription factor AP2. Mol Psychiatry 4: S67

    Google Scholar 

  • DOLAN RJ, BENCH CJ, BROWN RG, SCOTT LC, FRACKOWIAK RS (1994) Neuropsychological dysfunction in depression: the relationship to regional cerebral blood flow. Psychol Med 24: 849–857

    PubMed  CAS  Google Scholar 

  • DOWLATSHAHI D, MACQUEEN GM, WANG JF, YOUNG LT (1998) Increased temporal cortex CREB concentrations and antidepressant treatment in major depression [letter]. Lancet 352: 1754–1755

    PubMed  CAS  Google Scholar 

  • DREVETS WC (1999) Prefrontal cortical-amygdalar metabolism in major depression. Ann NY Acad Sci 877: 614–637

    PubMed  CAS  Google Scholar 

  • DREVETS WC, VIDEEN TO, PRICE JL, PRESKORN SH, CARMICHAEL ST, RAICHLE ME (1992) A functional anatomical study of unipolar depression. J Neurosci 12: 3628–3641

    PubMed  CAS  Google Scholar 

  • DREVETS WC, PRICE JL, SIMPSON JR Jr, TODD RD, REICH T, VANNIER M, RAICHLE ME (1997) Sub-genual prefrontal cortex abnormalities in mood disorders. Nature 386: 824–827

    PubMed  CAS  Google Scholar 

  • DREVETS WC, FRANK E, PRICE JC, KUPFER DJ, HOLT D, GREER PJ, HUANG Y, GAUTIER C, MATHIS C (1999) PET imaging of serotonin lA receptor binding in depression. Biol Psychiatry 46: 1375–1387

    PubMed  CAS  Google Scholar 

  • DUMAN RS (1998) Novel therapeutic approaches beyond the serotonin receptor. Biol Psychiatry 44: 324–335

    PubMed  CAS  Google Scholar 

  • DUMAN RS, HENINGER GR, NESTLER EJ (1994a) Ad-aptations of receptor-coupled signal transduction pathways underlying stress-and drug-induced neural plasticity. J Nery Ment Dis 182: 692–700

    CAS  Google Scholar 

  • DUMAN RS, HENINGER GR, NESTLER EJ (1994b) Mo-lecular psychiatry. Adaptations of receptor-coupled signal transduction pathways underlying stress-and drug-induced neural plasticity. J Nery Ment Dis 182: 692–700

    CAS  Google Scholar 

  • DUMAN RS, íMALBERG J, THOME J (1999) Neural plas-ticity to stress and antidepressant treatment. Biol Psychiatry 46: 1181–1191

    CAS  Google Scholar 

  • EKBLOM J, ZHU QS, CHEN K, SHIH JC (1996) Monoamine oxidase gene transcription in human cell lines: treatment with psychoactive drugs and ethanol. J Neural Transm [Gen Sect] 103: 681–692

    CAS  Google Scholar 

  • GAGE FH (2000) Mammalian neural stem cells. Science 287: 1433–1438

    PubMed  CAS  Google Scholar 

  • GARDIER AM, MALAGIE I, TRILLAT AC, JACQUOT C, ARTIGAS F (1996) Role of 5-HT1A autoreceptors in the mechanism of action of serotonergic antidepressant drugs: recent findings from in vivo microdialysis studies. Fundam Clin Pharmacol 10: 16–27

    PubMed  CAS  Google Scholar 

  • GOLD SJ, NI YG, DoHLMAN HG, NESTLER EJ (1997) Regulators of G-protein signaling (RGS) proteins: region-specific expression of nine subtypes in rat brain. J Neurosci 17: 8024–8037

    PubMed  CAS  Google Scholar 

  • Gouty E (1999) Serotonin and hippocampal neurogenesis. Neuropsychpharmacology 21: 2S

    Google Scholar 

  • GOULD E, TANAPAT P (1999) Stress and hippocampal neurogenesis. Biol Psychiatry 46: 14721479

    Google Scholar 

  • GOULD E, BEYLIN A, TANAPAT P, REEVES A, SHORS TJ (1999a) Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci 2: 260–265

    CAS  Google Scholar 

  • GOULD E, REEVES AJ, FALLAD M, TANAPAT P, GROSS CG, FUCHS E (1999b) Hippocampal neurogenesis in adult Old World primates. Proc Natl Acad Sci USA 96: 5263–5267

    CAS  Google Scholar 

  • GOULD E, TANAPAT P, HASTINGS NB, SHORS TJ (1999e) Neurogenesis in adulthood: a possible role in learning. Trends Cogn Sci 3: 186192

    Google Scholar 

  • HASTINGS NB, Gout“) E (1999) Rapid extension of axons into the CA3 region by adult-generated granule cells. J Comp Neurol 413: 146–154

    Google Scholar 

  • HEILS A, MURPHY DL, LI Q, WICHEMS C, TIURMINA O. MOCHIZUKI H, JACOBOWEEZ D, MOSSNER R, REISER R, LESCH KP (2001) Efficient lentivirus-mediated gene transfer and targeted transgene expression in serotonergic raphe neurons driven by the serotonin transporter gene promoter. J Neurochem (im Druck)

    Google Scholar 

  • HOVER D, MARTIN G (1997) 5-HT receptor classification and nomenclature: towards a harmonization with the human genome. Neuropharmacology 36: 419–428

    Google Scholar 

  • HYMAN SE, NESTIER EJ (1996) Initiation and adaptation: a paradigm for understanding psycho-tropic drug action. Am J Psychiatry 153: 151–162

    PubMed  CAS  Google Scholar 

  • JENSEN JB, MIKKELSEN JD, MORK A (2000) Increased adenylyl cyclase type 1 rRNA, but not adenylyl cyclase type 2 in the rat hippocampus following antidepressant treatment [in process citation]. Eur Neuropsychopharmacol 10: 105–111

    PubMed  CAS  Google Scholar 

  • JOHANSSON IM, BTARTMAR L, MARCUSSON J, Ross SB, SEGEL JR, OLSSON T (1998) Chronic amitriptyline treatment induces hippocampal NGFI-A, glucocorticoid receptor and mineralocorticoid receptor mRNA expression in rats. Brain Res Mol Brain Res 62: 92–95

    PubMed  CAS  Google Scholar 

  • Julius D (1991) Molecular biology of serotonin receptors. Annu Rev Neurosci 14: 335–360

    PubMed  CAS  Google Scholar 

  • KAPUTT MG, MAKIMURA H (1997) Defective viral vectors as agents for gene transfer in the nervous system. J Neurosci Meth 7: 125–132

    Google Scholar 

  • KARPATI G, LOCHMÜLLER H, NALBANTOGLU J, DURHAM H (1996) The principles of gene therapy for the nervous sytem. Trends Neurosci 19: 49–54

    PubMed  CAS  Google Scholar 

  • KEMPEILNANN G, GAGE FH (1999) Experience-dependent regulation of adult hippocampal neurogenesis: effects of long-term stimulationand stimulus withdrawal. Hippocampus 9: 321–332

    Google Scholar 

  • KFMPERMANN G, KUHN HG, GAGE FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386: 493495

    Google Scholar 

  • LE CORRE. S, SHARP T, YOUNG AH, HARRISON PJ (1997) Increase of 5-HT7 (serotonin-7) and 5I IT1A (serotonin-1A) receptor mRNA expression in rat hippocampus after adrenalectomy. Psyehopharmacology 130: 368–374

    Google Scholar 

  • LERER B, GELFIN Y, GORFINE M, ALLOLIO B, LESCH KP, NEWMAN ME (1998) 5-HT1A receptor function in normal subjects on clinical doses of fluoxetine: blunted temperature and hormone responses to ipsapirone challenge. Neuropsychopharmacology 20: 628–636

    Google Scholar 

  • LESCH KP (1997) Molecular biology, pharmacology, and genetics of the serotonin transporter: psychobiological and clinical implications. In:BAUMGARTEN HG,GörHERT M (eds) Serotoner-gic neurons and 5-HT receptors in the CNS. Springer, Berlin Heidelberg New York Tokyo, pp 671–705

    Google Scholar 

  • LESCH KP (1999) Gene transfer to the brain: emerging therapeutic strategy in psychiatry? Biol Psychiatry 45: 247–253

    PubMed  CAS  Google Scholar 

  • LESCH KP, MANJI HK (1992) Signal-transducing G proteins and antidepressant drugs: evidence for modulation of alpha subunit gene expression in rat brain. Biol Psychiatry 32: 549–579

    PubMed  CAS  Google Scholar 

  • LESCH KP, MOSSNER R (1999) 5-HTIA receptor inactivation: anxiety or depression as a murine experience. Int J Neuropsychopharmacol 2: 327–331

    PubMed  CAS  Google Scholar 

  • LESCH KP, HEILS A (2000) Serotonergic gene transcriptional control regions: targets for antidepressant drug development? Int J Neuropsychopharmacol 3: 67–79

    PubMed  CAS  Google Scholar 

  • LESCH KP, HOH A, OSrERHEIDE.R M, SCHULTE HM, MOLLER T (1991) Long-term fluoxetine treatment decreases 5-HTIA receptor responsivity in obsessive-compulsive disorder. Psycho-pharmacology 105: 415–420

    CAS  Google Scholar 

  • LESCH KP, AULAKH CS, WOLOZIN BL, TOLLIVER TJ, HILL. JL, MURPHY DL (1993) Regional brain expression of serotonin transporter mRNA and its regulation by reuptake inhibiting antidepressants. Mol Brain Res 17: 31–35

    PubMed  CAS  Google Scholar 

  • LESLIE RA, MooRMAN JM, CoULSON A, GRAHAMESMITH DG (1993) Serotonin2/1C receptor activation causes a localized expression of the immediate-early gene c-fos in rat brain: evidence for involvement of dorsal raphe nucleus projection fibres. Neuroscience 53: 457–463

    PubMed  CAS  Google Scholar 

  • LUPIEN SJ, NAIS NP, BAIERA S, MAHEU F, Tu MT, LEMAY M, MCEWEN BS, MEANEY MJ (1999) In-creased cortisol levels and impaired cognition in human aging: implication for depression and dementia in later life. Rev Neurosci 10: 117–139

    PubMed  CAS  Google Scholar 

  • LUTTRELL LM, DAAKA Y, LEFKOwrrz RJ (1999a) Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Curr Opin Cell Biol 11: 177–183

    CAS  Google Scholar 

  • LUTTAELL LM, FERGUSON SS, DAAKA Y, MILLER WE, MAI DSLEY S, DELLA ROCCA GJ, LIN F, KAWAKATSU H, OWADA K, LUTTRELI. DK, CARON MG, LEFKOWITZ RJ (1999b) Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 283: 655–661

    Google Scholar 

  • MAKI HK, BEICHUK JM, MooRE GJ, GLITZ D, HASANAT KA, CHEN G (1999) Modulation of CNS signal transduction pathways and gene expression by mood-stabilizing agents: therapeutic implications. J Clin Psychiatry 60 [Suppl 21: 27–39; discussion 40–41, 113–116

    Google Scholar 

  • MAN-BERG HS, LIOrTI M, BRANNAN SK, MCGINNIs S, MAHURIN RK, JERABEK PA, SILVA JA, TEKELL JL, MARTIN CC, LANCASTER JL, Fox PT (1999) Recip-rocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry 156: 675–682

    Google Scholar 

  • MCEWEN BS (1999) Stress and hippocampal plasticity. Annu Rev Neurosci 22: 105–122

    PubMed  CAS  Google Scholar 

  • MCEWEN BS, DE LEON MJ, LUPIEN SJ, MEANEY MJ (1999) Corticosteroids, the aging brain and cognition. Trends Endocrinol Metab 10: 92–96

    PubMed  CAS  Google Scholar 

  • McGoWAN S, EASTWOOD SL, MEAD A, BURNET PW, SMITII C, FLANIGAN TP, HARRISON PJ (1996) Hippocampal and cortical G protein (Gs alpha, G(o) alpha and Gil alpha) mRNA expression after electroconvulsive shock or lithium carbonate treatment. Eur J Pharmacol 306: 249–255

    PubMed  CAS  Google Scholar 

  • MENDELSON SD, MCEWEN BS (1992) Autoradio-graphic analyses of the effects of adrenalectomy and corticosterone on 5-HTIA and 5-HT1B receptors in the dorsal hippocampes and cortex of the rat. Neuroendocrinology 55: 444–450

    PubMed  CAS  Google Scholar 

  • MENDEZ J, KADIA TM, SOMAYAZULA RK, EL-BADAWI KI, CowEN DS (1999) Differential coupling of serotonin 5-HT1A and 5-HT1B receptors to activation of ERK2 and inhibition of adenylyl cyclase in transfected CHO cells. J Neurochem 73: 162–168

    PubMed  CAS  Google Scholar 

  • MILLER WE, MAUDSLEY S, AHN S, KHAN KD, LUITRELL LM, LEFKOWITZ RJ (2000) Beta-Arrestinl inter-acts with the catalytic domain of the tyrosine kinase c-SRC. Role of beta-arrestinl-dependent targeting of c-src in receptor endocytosis. J Biol Chem 275: 11312–11319

    PubMed  CAS  Google Scholar 

  • MOORMAN JM, JACKSON A, GRAHAME-SMITH DG, Leslie RA (1995) Induction of c-fos in rat forebrain by pharmacological manipulation of 5-hydroxytryptamine levels. Neuroscience 68: 1089–1096

    PubMed  CAS  Google Scholar 

  • MORINOBU S, STRAUSBAUGH H, TERWILLIGER R, DOMAN RS (1997) Regulation of c-Fos and NGF1-A by antidepressant treatments. Synapse 25: 313–320

    PubMed  CAS  Google Scholar 

  • MORISHITA R, GIBBONS GH, HORIUCHI M, ELLISON KE, NAcAMA M, ZHANG L, KANEDA Y, OGIHARA T, DZAU VJ (1995) A gene therapy strategy using a transcription factor decoy of the E2F binding site inhibits smooth muscle proliferation in vivo. Proc Natl Acad Sci USA 92: 5855–5859

    PubMed  CAS  Google Scholar 

  • NESTLER EJ, TERWILLIGER RZ, HALM E (1989) Corti-costerone increases protein tyrosine kinase activity in the locus coeruleus and other monoaminergic nuclei of rat brain. Mol Pharmacol 35: 265–270

    PubMed  CAS  Google Scholar 

  • NESTLER EJ, MCMAHON A, SABBAN EL, TALLMAN JF, DOMAN RS (1990) Chronic antidepressant administration decreases the expression of tyrosine hydroxylase in the rat locus coeruleus. Proc Natl Acad Sci USA 87: 7522–7526

    PubMed  CAS  Google Scholar 

  • NIBUYA M, MORINOBU S, DUMAN RS (1995) Regula-tion of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 15: 7539–7547

    PubMed  CAS  Google Scholar 

  • NIBLTYA M, NESTLER EJ, DUMAN RS (1996) Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J Neurosci 16: 2365–2372

    Google Scholar 

  • OKUGAWA G, OMORI K, SUZUKAWA J, FUJISEKI Y, KINOSHITA T, INAGAKI C (1999) Long-term treatment with antidepressants increases glucocorticoid receptor binding and gene expression in cultured rat hippocampal neurones. J Neuroendocrinol 11: 887–895

    PubMed  CAS  Google Scholar 

  • OZAWA H, RASENICK MM (1989) Coupling of the stimulatory GTP-binding protein Gs to rat synaptic membrane adenylate cyclase is enhanced subsequent to chronic antidepressant treatment. Mol Pharmacol 36: 803–808

    PubMed  CAS  Google Scholar 

  • OZAWA H, RASENICK MM (1991) Chronic electroconvulsive treatment augments coupling of the GTE-binding protein Gs to the catalytic moiety of adenylyl cyclase in a manner similar to that seen with chronic antidepressant drugs. J Neurochem 56: 330–338

    PubMed  CAS  Google Scholar 

  • PARIANIB CM, PEARCE BD, PISELL TL, OWENS MJ, MILLER AH (1997) Steroid-independent trans-location of the glucocorticoid receptor by the antidepressant desipramine. Mol Pharmacol 52: 571–581

    Google Scholar 

  • PAUL S (1999) CNS drug discovery in the 21st century. From genomics to combinatorial chemistry and back. BrJ Psychiatry [Suppll 37: 23–25

    Google Scholar 

  • PEPIN MC, GOVINDAN MV, BARDEN N (1992) In-creased glucocorticoid receptor gene promoter activity after antidepressant treatment. Mol Pharmacol 41: 1016–1022

    PubMed  CAS  Google Scholar 

  • PoPOLI M, BRUNELLO N, PEREZ J, RACAGNI G (2000) Second messenger-regulated protein kinases in the brain: their functional role and the action of antidepressant drugs. J Neurochem 74: 21–33

    PubMed  CAS  Google Scholar 

  • Posr RM (1990) Sensitization and kindling perspectives for the course of affective illness: toward a new treatment with the antieonvulsantcarhamazepine. Pharmacopsychiat 23: 3–17

    Google Scholar 

  • Post RM (1992) Transduction of psychosocial stress into the neurobiology of recurrent affective disorders. Am J Psychiatry 149: 999–1010

    PubMed  CAS  Google Scholar 

  • PRICE JL (1999) Prefrontal cortical networks related to visceral function and mood. Ann NY Acad Sei 877: 383–396

    CAS  Google Scholar 

  • RAJKOWSKA G, MIGUEL-HIDALGO JJ, WEI J, DILLEY G, PITTMAN SD, MELTZER HY, OVERHOLSER JC, ROTH BL, STOCKMETER CA (1999) Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression [see comments]. Biol Psychiatry 45: 1085–1098

    PubMed  CAS  Google Scholar 

  • RASENICK MM, CHANEY KA, CHEN J (1996) G pro-tein-mediated signal transduction as a target of antidepressant and antibipolar drug action: evidence from model systems. J Clin Psychiatry 57 [Suppl] 131: 49–55; discussion 56–58

    Google Scholar 

  • REICHEL RR, JACOB ST (1993) Control of gene expression by lipophilic hormones. FASEB J 7: 427–436

    PubMed  CAS  Google Scholar 

  • SAPOLSKY RM (1996) Stress, glucocorticoids, and damage to the nervous system: the current state of confusion. Stress 1: 1–19

    PubMed  CAS  Google Scholar 

  • SAPOLSKY RM (1999) Glucocorticoids, stress, and their adverse neurological effects: relevance to aging. Exp Gerontol 34: 721–732

    PubMed  CAS  Google Scholar 

  • SAPOLSKY RM, ROMERO LM, MONCK AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21: 55–89

    CAS  Google Scholar 

  • SCHULTZBERG M, AUSTIN MC, CRAWLEY JN, PAUL SM (1991) Repeated administration of desmethyl-imipramine blocks the reserpine-induced increase in tyrosine hydroxylase mRNA in locus coeruleus neurons of the rat. Brain Res Mol Brain Res 10: 307–314

    PubMed  CAS  Google Scholar 

  • SEN D, GILBERT W (1990) A sodium-potassium switch in the formation of four-stranded G4-DNA. Nature 344: 410–414

    PubMed  CAS  Google Scholar 

  • SIBILLE E, SARNYAI Z, BENJAMIN D, GAL J, BAKER H, Tom M (1997) Antisense inhibition of 5hydroxytryptamine2a receptor induces an antidepressant-like effect in mice. Mol Pharmacol 52: 1056–1063

    PubMed  CAS  Google Scholar 

  • SIMON Ml, STRATHMANN MP, GAUTAM N (1991) Di-versity of G proteins in signal transduction. Science 252: 802–808

    PubMed  CAS  Google Scholar 

  • SILICIAK JA, CLARK MS, RIND HB, WHITTEMORE. SR, Russo AF (1998) BDNF induction of tryptophan hydroxylase mRNA levels in the rat brain. J Neurosci Res 52: 149–158

    Google Scholar 

  • SMERALDI E, ZANARDI R, BENEDETTI F, Di BELLA D, PEREZ J, CATALANO M (1998) Polymorphism within the promoter of the scrotonin transporter gene and antidepressant efficacy of fluvoxamine. Mol Psychiatry 3: 508–511

    PubMed  CAS  Google Scholar 

  • SMITH MA, MARINO S, KVETNANSKY R, POST RM (1995) Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippo-campus. j Neurosci 15: 1768–1777

    CAS  Google Scholar 

  • STONE EA, ZHANG Y, JOHN SM, BING G (1991) c-Fos response to administration of catecholamines into brain by microdialysis. Neurosci Lett 133: 33–35

    PubMed  CAS  Google Scholar 

  • STONE EA, ZHANG Y, HILLER JM, SIMON EJ, HILLMAN DE (1997) Activation of fos in mouse amygdala by local infusion of norepinephrine or atipamezole. Brain Res 778: 1–5

    PubMed  CAS  Google Scholar 

  • TAYLOR CW (1990) The role of G proteins in trans-membrane signalling. Biochem J 272: 1–13

    PubMed  CAS  Google Scholar 

  • THIRIET N, HIIMBLOT N, BURGUN C, AUNIS D, ZWILLER J (1998) Cocaine and fluoxetine induce the expression of the hVH-5 gene encoding a MAP kinase phosphatase. Brain Res Mol Brain Res 62: 150–157

    PubMed  CAS  Google Scholar 

  • TILAKARATNE N, FRIEDMAN E (1996) Genomic re-sponses to 5-HT1A or 5-HT2A/2C receptor activation is differentially regulated in four regions of rat brain. Eur J Pharmacol 307: 211–217

    PubMed  CAS  Google Scholar 

  • TOIIDA M, WATANABE H (1996) Imipramine-induced increase in 5-HT2C receptor mRNA level in the rat brain. Neurosci Res 24: 189–93

    Google Scholar 

  • TOTI I M (1996) Transcriptional regulation of the 5-HT2A receptor. Behav Brain Res 73: 183–186

    Google Scholar 

  • TOTH M, SHENK T (1994) Antagonist-mediated down-regulation of 5-hydroxytryptamine type 2 receptor gene expression: modulation of transcription. Mol Pharmacol 45: 1095–1100

    PubMed  CAS  Google Scholar 

  • TUSZYNSKI MH, GAGE EH (1996) Somatic gene therapy for nervous system disease. Ciba Found Symp 196: 85–97

    PubMed  CAS  Google Scholar 

  • VERHAAGEN J, I IERMENS WTJMC, DIJKHUIZEN PA, HOLTMAAT AJGD, GISPEN WH (1996) Use of viral vectors to promote neuroregeneration. Neurosci 3: 275–283

    CAS  Google Scholar 

  • YAMASHITA J, YOSHIMASA T, ARAI H, HIRAOKA J, TAKAYA K, MIYAMoro Y, OGAWA Y, ITOH H, NAKAO K (1998) Identification of cis-elements of the human endothelin-A receptor gene and inhibition of the gene expression by the decoy strategy. J Biol Chem 273: 15993–15999

    PubMed  CAS  Google Scholar 

  • YAI JL, NOBLE J, WIDDOwsoN J, SECKL JR (1997) Impact of adrenalectomy on 5-I IT6 and 5-HT7 receptor gene expression in the rat hippocampus. Brain Res Mol Brain Res 45: 182–186

    Google Scholar 

  • ZHONG P, CIARANELLO RD (1995) Transcriptional regulation of hippocampal 5-HT1a receptors by corticosteroid hormones. Brain Res Mol Brain Res 29: 23–34

    PubMed  CAS  Google Scholar 

  • ZWICK E, RACKET. PO, PRENZEL N, IILLRICH A (1999) The EGF receptor as central transducer of heterologous signalling systems. Trends Pharmacol Sci 20: 408–4412

    PubMed  CAS  Google Scholar 

  • ABERCROMBIE HC, SCHAEFER SM, LARSON CL, OAKES TR, LINDGREN KA, HOLDEN JE, PERLMAN SB, TURSKI PA, KRAHN DD, BINCA RM, DAVIDSON RJ(1998) Metabolic rate in the right arnygdala predicts negative affect in depressed patients. Neuroreport 9: 3301–3307

    PubMed  CAS  Google Scholar 

  • AUSTIN MP, DoUGALL N, Ross M, MURRAY C, O’CARROLL RE, MOFFOOT A, EBMEIER KP, GOOD-WIN GM (1992) Single photon emission tomography with 99mTc-exametazime in major depression and the pattern of brain activity underlying the psychotic/neurotic continuum. J Affect Disord 26: 31–43

    PubMed  CAS  Google Scholar 

  • AWATA S, ITO H, KONNO M, ONO S, KAWASHIMA R, FUKUDA H, SATO M (1998) Regional cerebral blood flow abnormalities in late-life depression: relation to refractoriness and chronification. Psychiatry Clin Neurosci 52: 97–105

    PubMed  CAS  Google Scholar 

  • BAXTER L, PHELPS M, MAZZIo vrAS J (1985) Cerebral metabolic rates for glucose in mood disorders, studied with positron emission tomography (PET) and (F-18)-fluoro-2-deoxyglucose (FDG). Arch Gen Psychiatry 42: 441–447

    PubMed  Google Scholar 

  • BAXTER L, SCHWARTZ J, PHELPS M (1989) Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry 46: 243–250

    PubMed  CAS  Google Scholar 

  • BEAUREGARD M, LEROUXJM, BERGMAN S, YERVANT A, BEAUDOIN G, BORGOUIN P, SHP E (1998) The functional neuroanatomy of major depression: an fMRl study using an emotional activation paradigm. Neuroreport 9: 3253-3258

    PubMed  Google Scholar 

  • BECHARA A, TRANEL D, DANLASIO H, DAMASIO AR (1996) Failure to respond autonomically to anticipated future outcomes following darn-age to the prefrontal cortex. Cerebr Cort 6: 215–225

    CAS  Google Scholar 

  • BECK AT, RUSH JA, SHAW BS, EMERY G (1979) Cognitive therapy of depression. Guilford Press, New York

    Google Scholar 

  • BENCH CJ, FRISTON KJ, BROWN RG, SCOTT LC, FRACKOWIAK RS, DOLAN RJ (1992) The anatomy of melancholia-focal abnormalities of cerebral blood flow in major depression. Psychol Med 22: 607–615

    PubMed  CAS  Google Scholar 

  • BIVER F, GOLDMAN S, DELVENNE V, LUXEN A, DEMAERTELAER V, HUBAIN P, MENDLEWICZJ, LOTSTRA F (1994) Frontal and parietal metabolic disturbances in unipolar depression. Biol Psychiatry 36: 381–388

    PubMed  CAS  Google Scholar 

  • BONNE O, KRAUSZ Y, GORFINE M, KARGER H, GELFIN Y, SHAPIRA B, CHISIN R, LERER B (1996A) Cerebral hypoperfusion in medication resistant, depressed patients assessed by Tc99m HMPAO SPECT. J Affect Disord 41: 163–171

    CAS  Google Scholar 

  • BONNE O, KRAUSZ Y, SHAPIRA B, BOCHER M, KARGER H, GORFINE M, CHISIN R, LERER B (1996B) In-creased cerebral blood flow in depressed patients responding to electroconvulsive therapy. J Nucl Med 37: 1075–1080

    CAS  Google Scholar 

  • BOTEZ MI (1987) Les syndromes du lobe frontal. In: BOTEZ MI (ed) Neuropsychologie clinique et neurologie du comportement. Presses de l’universit¨¦ de Montr¨¦al, Montr¨¦al, pp 117–134

    Google Scholar 

  • BRODY AL, SAXENA S, SILVERMAN DH, ALBORZIAN S, FAIRBANKS LA, PHELPS, IIUANG SC, We HM, MAIDMENT K, BAXTER LR JR (1999) Brain metabolic changes in major depressive disorder form pre-to post-treatment with paroxetine. Psychiatry Res 91: 127–139

    PubMed  CAS  Google Scholar 

  • BUCHSBAUM MS, DELISI LE, HOLCOMB HH (1984a) Antero-posterior gradients in cerebral glucose use in schizophrenia and affective disorders. Arch Gen Psychiatry 41: 1159–1166

    CAS  Google Scholar 

  • BUCHSBAUM MS, CAPPELLETTI J, BALL R, HAZLETT E, KING AC, JOHNSON J, WU J, DELIS] LE (1984b) Positron emission tomographic image measurement in schizophrenia and affective disorders. Ann Neurol 15 [Suppl]: 157–165

    Google Scholar 

  • BUCHSBAUM MS, WU J, DELISI LE, I IOLCOMB II, KESSLER R, JOHNSON J, KING AC, HAZLETT E, LANGSTON K, POST RM (1986) Frontal cortex and basal ganglia metabolic rates assessed by positron emission tomography with [18F12-deoxyglucose in affective illness. J Affect Disord 10: 137–152

    PubMed  CAS  Google Scholar 

  • CARMICHAEL ST, PRICE JL (1995) Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 363: 615–641

    PubMed  CAS  Google Scholar 

  • CHEN YC, GALPERN WR, BROWNELL AL, MATTHEWS RT, BOGDANOV M, ISACSON O, KELTNER JR, BEAL MF, ROSEN BR, JENKINS BG (1997) Detection of dopaminergic neurotransmitter activity using pharmacologie MRI: correlation with PET, microdialysis, and behavioral data. Magn Re-son Med 38: 389–398

    CAS  Google Scholar 

  • COFFEY C, WILKINSON W, WEINER R (1993) Quantitative cerebral anatomy of depression: a controlled magnetic resonance imaging study. Arch Gen Psychiatry 50: 7–16

    PubMed  CAS  Google Scholar 

  • COHEN FM, SEMPLE WE, GROSS M (1989) Evidence for common alterations in cerebral glucose metabolism in major affective disorders and schizophrenia. Neuropsychopharmacology 2: 241–254

    PubMed  CAS  Google Scholar 

  • COSGROVE GR, BAUSCH SL (1995) Psychosurgery. Neurosurg Clin North Am 6: 167–176

    CAS  Google Scholar 

  • CURRAN SM, MURRAY CM, VAN BECK M, DOUGALL N, O’CARROLL RE, AUSTIN MP, EBMEIER KP, GOOD-WIN GM (1993) A single photon emission computerised tomography study of regional brain function in elderly patients with major depression and with Alzheimer-type dementia. Br J Psychiatry 163: 155–165

    PubMed  CAS  Google Scholar 

  • DAMAS[o AR, TRANEL D, DAMASIO H (1990) Individ-uals with sociopathic behavior caused by frontal damage fail to respond automatically to social stimuli. Behav Brain Res 41: 81–94

    Google Scholar 

  • DEICKEN RF, FEIN G, WEINER MW (1995) Abnormal frontal lobe phosphorus metabolism in bipolar disorder. Am J Psychiatry 152: 915-918

    PubMed  CAS  Google Scholar 

  • DEI.VENNE V, DELECLUSE F, HIJBAIN PP, SCI IOI’TENS A, DE MAERTEIAER V, MENDLEWICZ J (1990) Region-al cerebral blood flow in patients with affective disorders. Br J Psychiatry 157: 359–365

    Google Scholar 

  • DE RAEDT R, D’HAENEN H, EVERAERT H, CLUYDTS R, BossUYT A (1997) Cerebral blood flow related to induction of a depressed mood within and out of the realm of attention in normal volunteers. Psychiatry Res 74: 159–171

    CAS  Google Scholar 

  • DREVETS W, VIDEEN T, PRESKORN S, CARMICHAEL T,RAICHLE ME (1992) A functional anatomical study of unipolar depression. F Neurosci 12: 3628–3641

    CAS  Google Scholar 

  • DREVETS W, PRICE JL, SIMPSONJR JR, TODD RD, REICH T, VANNIER M, RAICIILE ME (1997) Subgenual prefrontal cortex abnormalities in mood disorders. Nature 386: 824–827

    PubMed  CAS  Google Scholar 

  • EBERT D, EBMEIER KP (1996) The role of the cingulate gyms in depression: from neuroanatomy to neurochemistry. Biol Psychiatry 39: 1044–1050

    PubMed  CAS  Google Scholar 

  • EBERT D, FEISTEL H, BAROCKA A (1991) Effects of sleep deprivation on the limbic system and the frontal lobes in affective disorders: a study with Tc-99m-HMPAO SPELT. Psychiatry Res 40: 247–251

    PubMed  CAS  Google Scholar 

  • EBERT D, FEISTEL H, BAROCKA A, KASCHKA W,MOKRUSCH T (1993) A test-retest study of cerebral blood flow during somatosensory stimulation in depressed patients with schizophrenia and major depression. Eur Arch Psychiatry Clin Neurosci 242: 250–254

    PubMed  CAS  Google Scholar 

  • EBERT D, FEISTEL H, BAROCKA A, KASCIIKA WP, FIR-NER A (1994) Increased limbic blood flow and total sleep deprivation in major depression with melancholia. Psychiatry Res: Neuroimaging 55: 101–109

    PubMed  CAS  Google Scholar 

  • ENDE G, BRADS DF, WALTER S, WEBER-FAHR W, HENN FA (2000) The hippocampus in patients treat-ed with electroconvulsive therapy: a proton magnetic resonance spectroscopic imaging study. Arch Gen Psychiatry 57: 937–943

    PubMed  CAS  Google Scholar 

  • FRANCOIS A, BIVER F, GOLDMAN S, LUXEN A, MEND-LEWICZ J, LOTSTRA F (1995) Reduction du rap-port metabolique frontal supero-basal dans la depression unipolaire. Acta Psychiatr Belg 95:234–245

    CAS  Google Scholar 

  • GALYNKER II, CAI J, ONGSENG F, FINESTONE H, DUTTA E, SERSENI D (1998) Hypofrontality and negative symptoms in major depressive disorder. J Nucl Med 39: 608–612

    PubMed  CAS  Google Scholar 

  • GEMAR MC, KAPUR S, SEGAL ZV, BROWN GM, I IOULE S (1996) Effects of self-generated sad mood on regional cerebral activity: a PET study in normal subjects. Depression 4: 81–88

    PubMed  CAS  Google Scholar 

  • GEORGE MS, KETTER TA, PAREKH PI, HORWITZ B, HERSCOVITCH P, POST RM (1995) Brain activity during transient sadness and happiness in healthy women. Am J Psychiatry 152: 341–351

    PubMed  CAS  Google Scholar 

  • GINSBERG MD, CHANG JY, KELLY RE, YOSHII F, BARKER WW, INGENITO G BOOTHE TE (1985) Increases in both cerebral glucose utilization and blood flow during the execution of a somatosensory task. Ann Neurol 23: 153–157

    Google Scholar 

  • GOODWIN GM, AUSTINN MP, DOUGALL N, Ross M, MURRAY C, O’CARROLL RE, MOFFOOT A, PRENTICE N, EBMEIER KP (1993) State changes in brain activity shown by the uptake of 99mTc-exametazime with single photon emission tomography in major depression before and after treatment. J Affect Disord 29: 243-253

    PubMed  CAS  Google Scholar 

  • GOODWIN GM, CAVANAGH JT, GIABUS MF, KEHOE RF, O’CARROLL RE, EBMEIER KP (1997) Uptake of 99mTc-exametazime shown by single photon emission computed tomography before and after lithium withdrawal in bipolar patients: associations with mania. Br J Psychiatry 170: 426–430

    PubMed  CAS  Google Scholar 

  • GUR RC, GUR RE, OBRIST WD (1982) Sex and handedness differences in cerebral blood flow during rest and cognitive activity. Science 213: 659–661

    Google Scholar 

  • GUR RE, SKOLNICK BE, GUR RC, CAROFF S, RIEGER W, OBRIST WD, YOINKIN D, REIVICII M (1984) Brain function in psychiatric disorders. II. Regional cerebral blood flow in medicated unipolar depressives. Arch Gen Psychiatry 41: 695–699

    Google Scholar 

  • GUSTAFSON L, RISBERG J, SII.FVERSKIÖLDP (1981) Cerebral blood flow in dementia and depression. Lancet is 275

    Google Scholar 

  • HALLORAN E, PRENTICE N, MURRAY CL, O’ CARROLL RE, GLABUS MF, GOODWIN GM, EBMEIER KP (1999) Follow-up study of depression in the elderly ¨C clinical and SPECT data. Br J Psychiatry 175: 252–258

    PubMed  CAS  Google Scholar 

  • HAMILTON M (1986) The Hamilton rating scale for depression. In: SARTORIUS N, BAN TA (eds) Assessment of depression. Springer, Berlin Heidelberg New York, pp 143–152

    Google Scholar 

  • HIcKIE I, WARD P, SCOTT E, HAINDL W, WALKER B, DIXON J TURNER K (1999) Neo-striatal rCBF correlates of psychomotor slowing in patients with major depression. Psychiatry Res 92: 75–81

    PubMed  CAS  Google Scholar 

  • HOLTHOFF VA, BEUTHIEN-BAUMANN B, PIETRZYK U, PINKERT J, OEHME L, FRANKE WG, BACH O (1999) Regionale Funktionsstörung bei der Depression. Him-SPECT zur Verlaufskontrolle. Nervenarzt 70: 620–626

    PubMed  CAS  Google Scholar 

  • HORNIG M, MOZLEY PD, AMSTERDAM JD (1997) HMPAO SPECT brain imaging in treatment-resistant depression. Prog Neuropsychopharmacol Biol Psychiatry 21: 1097–1114

    PubMed  CAS  Google Scholar 

  • HYMAN SE, NESTLER EJ (1996) Initiation and adaptation: a paradigm for understanding psycho-tropic drug action. Am J Psychiatry 153: 151–162

    PubMed  CAS  Google Scholar 

  • IIDAKA T, NAKAJIMA T, SUZUKI Y, OKAZAKI A, MAE-HARAT, SIIIRaISHI H (1997) Quantitative regional cerebral flow measured by Tc-99M HMPAO SPECT in mood disorder. Psychiatry Res 68: 143–154

    PubMed  CAS  Google Scholar 

  • ITO II, KAWASHIMA R, AWArA S, ONO S, SATO K, GOTO R, KoYAMA M, SATO M, FUKUDA H (1996) Hypoperfusion in the limbic system and prefrontal cortex in depression: SPECT with anatomic standardization technique. J Noel Med 37: 410–414

    CAS  Google Scholar 

  • JOHANSON M, RISBERG J, SILFVERSKIÖLD P (1979) Regional cerebral blood flow related to acute memory disturbance following electroconvulsive therapy on depression. Acta Neurol Scand 60 ISuppl]: 534–535

    Google Scholar 

  • KAHN NH, DAVIDSON RJ, IRWIN W, WARNER G, OREN-DI JL, SUTTON SK, MOCK BJ, SORENSON JA, LOWE M, TURSKI PA (1997) Functional magnetic resonance imaging studies of emotional processing in normal and depressed patients: effects of venlafaxine. J Clin Psychiatry 58 [Suppl 16]: 32–39

    Google Scholar 

  • KANAYA T, YONEKAWA M (1990) Regional cerebral blood flow in depression. Jpn J Psychiat Neu-rol 44: 571–576

    CAS  Google Scholar 

  • KATO T, SHIOIRI T, TAKAHASHI S, INUBUSHI T (1991) Measurement of brain phosphoinositide in bipoar patients using in vivo P-31-MRS. J Affect Disord 22: 185–190

    PubMed  CAS  Google Scholar 

  • KATO T, TAKAHASHI S, SHIOIRI T, INUBUSHI T (1992) Brain phosphorus metabolism in depressive disorders detected by phosphorus-31 magnetic resonance spectroscopy. J Affect Disord 26: 223–230

    PubMed  CAS  Google Scholar 

  • KATO T, TAKAIIASIII S, SHIOIRI T. INUBUSHI T (1993) Alterations in brain phosphorus metabolism in bipoar disorder detected by in vivo P-31 and Li-7 magnetic resonance spectroscopy. J Affect Disord 27: 53–60

    PubMed  CAS  Google Scholar 

  • KATO T, TAKAHASHI Y, SHIOIRI T, MURASHITA J, HAMAKAWA H, INUBUSHI T (1994) Reduction of brain phosphocreatine in bipolar II disorder detected by phosphorus-31 magnetic resonance spectroscopy. J Affect Disord 31: 125–133

    PubMed  CAS  Google Scholar 

  • KATo T, SHIOIRI T, MuRASHITA J, HAMAKAWA H, TAKAHASHI Y, INUBUSHI T, TAKAHASHI S (1995) Lateralized abnormality of high energy phosphate metabolism in the frontal lobe of patients with bipolar disorder detected by P-31-MRS. Psychol Med 25: 557–566

    CAS  Google Scholar 

  • KAWAKATSU S, KOMATANI A (1994) Xe-133 inhala-tion single photon emission computerized tomography in manic-depressive illness. Nippon Rinsho 52: 1180–1184

    PubMed  CAS  Google Scholar 

  • KISIIIMOTo H, TAKAZIJ O, OHNO S, YAMAGUCHI T, FuirrA H, KVWAHAR.A H, stilt T, MATSUSHITA M, YOKOI S, Ito M (1987) 11C-glucose metabolism in manic and depressed patients. Psychiatry Res 22: 81–88

    Google Scholar 

  • KLING AS, MErrER EJ, RIEGE WH, Kum. DE (1986) Comparison of PET measurement of local brain glucose metabolism and CAT measurement of brain atrophy in chronic schizophrenia and depression. Am J Psychiatry 143: 175–180

    PubMed  CAS  Google Scholar 

  • KOWATCH RA, DEVOUS MD (SR.), HARVEY DC, MAYES TL, TRIVEDI MD, EMSLIE GJ, WEINBERG WA (1999) A SPECT HMPAO study of regional cerebral blood flow in depressed adolescents and normal controls. Prog Neuropsychopharmacol Biol Psychiatry 23: 643–656

    PubMed  CAS  Google Scholar 

  • KRISHNAN K, MCDONALD W, ESCALONA R (1992) Magnetic resonance imaging of the caudate nuclei in depression. Arch Gen Psychiatry 49: 553–557

    PubMed  CAS  Google Scholar 

  • LESSER IM, MENA I, BOONE KB, MILER BL, MEHRINGER CM, WOHL M (1994) Reduction of cerebral blood flow in older depressed patients. Arch Gen Psychiatry 51: 677–686

    PubMed  CAS  Google Scholar 

  • MAES M, DIERCKX R, MELTZERHY, INGELS M, SCHOTTE C, VANDEWOUDE M, CALABRESE J, COSYNS P (1993) Regional cerebral blood flow in unipolar depression measured with Tc-99m-HMPAO single photon emission computed tomography: negative findings. Psychiatry Res 50: 77–88

    PubMed  CAS  Google Scholar 

  • MARrINOT JL, PERON-MAGNANP (1987) Imagerie cerebrale et depression. Encephale 13: 273–277

    Google Scholar 

  • MARTINOT JL, HARDY P, FELINE A (1990) Left pre frontal glucose hypometabolism in the de-pressed state: a confirmation. Am J Psychiatry 147: 1313–1317

    PubMed  CAS  Google Scholar 

  • MATHEW RJ, MEYER JS, FRANCIS DJ, SEMCIIIK KM, MORTEL K, CLAGHORN JL (1980) Cerebral blood flow in depression. Am J Psychiatry 137: 1449–1450

    PubMed  CAS  Google Scholar 

  • MAYBERG HS, LEWIS PJ, REGENOLD W, WAGNER HN JR (1994) Paralimbic hypoperfusion in unipolar depression. J Nucl Med 35: 929–934

    PubMed  CAS  Google Scholar 

  • MAYBERG HS, BRANNAN SK, MAHURIN RK, JERABEK PA, BRICKMAN JS, TEKELL JL, SILVA JA, MCGINNIS S, GLASS TG, MARTIN CC, Fox PT (1997) Cingulate function in depression: a potential predictor of treatment response. Neuroreport 8: 1057–1061

    PubMed  CAS  Google Scholar 

  • MAYBERG HS, LIoro M, BRANNAN SK, MCGINNIS S, MAHURIN RK, JERABEK PA, SILVA JA, TEKELL JL, MARTIN CC, LANCASTERJL, Fox PT (1999) Recip-rocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. AmJ Psychiatry 156: 675–682

    CAS  Google Scholar 

  • MIGLIORELLI R, STARKSTEIN SE, TESON A. DE QUIROS G, VAZQUEZ S, LEIGUARDA R, ROBINSON RG (1993) SPECT findings in patients with primary mania. J Neuropsychiatr Clin Neurosci 5: 379–383

    CAS  Google Scholar 

  • AL-MOUSAWI AH, EVANS N, EBMEIER KP, ROEDA D, CHALONER F, AmxaRot--r GW (1996) Limbic dysfunction in schizophrenia and mania. A study using 18F-labelled Fluorodeoxyglucose and positron emission tomography. BrJ Psychiatry 169: 509–516

    Google Scholar 

  • MOZLEY PD, HORNIG-ROHAN M, WoDA AM, KIM HJ, ALAVI A, PAYER F, AMSTERDAM JD (1996) Cere-bral HMPAO SPECT in patients with major depression and healthy volunteers. Prog Neuropsychopharmacol Biol Psychiatry 20: 443–458

    PubMed  CAS  Google Scholar 

  • O’CONNELL RA, VAN HEERTUM RL, LUCK D, YUDD AP, CUEVA JE, BILLICK SB, CORDON DJ, GERSH RJ, MASDEU JC (1995) Single-photon emission computed tomography of the brain in acute mania and schizophrenia. J Neuroimaging 5: 101–104

    Google Scholar 

  • OGURA A, MORINOBU S, KAWAKATSU S, TOTSUKA S, KOMATANI A (1998) Changes in regional brain activity in major depression after successful treatment with antidepressant drugs. Acta Psychiatr Scand 98: 54–59

    PubMed  CAS  Google Scholar 

  • PARDO JV, PARDO PJ, RAICHLE ME (1993) Neural correlates of self-induced dysphoria. Am J Psychiatry 150: 713–719

    PubMed  CAS  Google Scholar 

  • PHELPS ME, MAZZIOTTA JC, BAXTER L, GERNER F (1984) Positron emission tomographic study of affective disorders: problems and strategies. Ann Neurol 15 [Suppll: 149–156

    Google Scholar 

  • POST R, LIST LD, HOLCOMB H, UHDE T. COHEN R, BUCHSBAUM MS (1987) Glucose utilization in the temporal cortex of affectively ill patients: positron emission tomography. Biol Psychiatry 22: 545–553

    PubMed  CAS  Google Scholar 

  • REISCHIES RM, HEDDE J, DROCHNER R (1989) Clinical correlates of cerebral blood flow in depression. Psychiatry Res 29: 323–326

    PubMed  CAS  Google Scholar 

  • RIEHEMANN S, VOLZ HP, SMESNY S, HUBNER G, WENDA B, RÖSSGERG, SAUERH (2000) Phospor-31-Magnetresonanz-Spektroskopie in der Schizophrenie-Forschung. Zur Pathophysiologie des cerebralen Stoffwechsels energiereicher Phosphate and Membranphospholipide. Nervenarzt 71: 354–363

    PubMed  CAS  Google Scholar 

  • RISBERG J (1980) Regional cerebral blood flow measurements by 133-Xenon-inhalation: methodology and applications in neuropsychology and psychiatry. Brain and Language 9: 9–34

    PubMed  CAS  Google Scholar 

  • ROLLS ET (1990) A theory of emotion, and its application to understanding the neural basis of emotion. Cognition & Emotion 4: 161–190

    Google Scholar 

  • RUSH AJ, SCHLESSER MA, STOKELY EM, BONTE FJ, ALTSHULER KZ (1982) Cerebral blood flow in depression and mania. Psychopharmocol Bull 18: 6–8

    Google Scholar 

  • SACKEIM H, PROHOVNIK I, MOELLER JR, BROWN RP, APTER S, PRIDIC J, DEVANAND P, MUKHERJEE SJ (1990) Regional cerebral blood flow in mood disorders. Arch Gen Psychiatry 47: 60–70

    PubMed  CAS  Google Scholar 

  • SCHNEIDER F, GUR RE, MOZLEY LH, SMITH RJ, MOZLEY PD, CENSITS DM, ALAVI A, Goa RC (1995) Mood effects on limbic blood flow correlate with emotional self-rating: a PET study with oxygen-15 labeled water. Psychiatry Res: Neuroimaging 61: 265–283

    PubMed  CAS  Google Scholar 

  • SCHNEIDER F, GRODD W, WEISS U, KLOSE U, MAYER KR, NAGELE T, GUR RC (1997) Functional MRI reveals left amygdala activation during emo-tion. Psychiatry Res: Neuroimaging 76: 75–82

    PubMed  CAS  Google Scholar 

  • SCOTT AI, DOUGALL N, Ross M, O’CARROLL RE, RIDDLE W, EBMEIER KP, GOODWIN GM (1994) Short-term effects of electroconvulsive treatment on the uptake of 99mTc-exametazime into brain in major depression shown with single photon emission tomography. J Affect Disord 30: 27–34

    PubMed  CAS  Google Scholar 

  • SILFVERSKIOLD P, GUSTAFSON L, JOHANSON M (1979) Regional cerebral blood flow related to the effect of electroconvulsive therapy in depres-sion. In: OBIOLS J, BALLUS E, GONZALEZ E (eds) Biological psychiatry today. Elsevier, Amsterdam, pp 1178–1183

    Google Scholar 

  • SILFVERSKIÖLD P, RISBERG J (1989) Regional cerebral blood flow in depression and mania. Arch Gen Psychiatry 46: 253–259

    PubMed  Google Scholar 

  • SHAH S, DORAISWAMY P, HUSAIN M (1992) Posterior fossa abnormalities in major depression: a controlled magnetic resonance imaging study. Acta Psychiatr Scand 85:474–479

    PubMed  CAS  Google Scholar 

  • SOKOLOFF L (1981) Relationships among local functional activity, energy metabolism, and blood flow in the central nervous system. Fed Proc 40: 2311–2314

    PubMed  CAS  Google Scholar 

  • STINE OC, Lou SU, ZITO M, CASANOVA M (1993) The possible association between affective disorder and partially deleted mitochondrial DNA. Biol Psychiatry 33: 141–142

    PubMed  CAS  Google Scholar 

  • STUss DT, BENSON DF (1986) Personality’ and emotion. In: STUSS DT, BENSON DF (eds) The frontal lobes. Raven Press, New York, pp 121–138

    Google Scholar 

  • TUTUS A, SIMSEK A, SOFUOGLU S, NARDALI M, KUGu N, KARAASLAN F, GONUL AS (1998) Changes in regional cerebral blood flow demonstrated by single photon emission computed tomography in depressive disorders: comparison of unipolar vs. bipolar subtypes. Psychiatry Res 83: 169–177

    PubMed  CAS  Google Scholar 

  • UPADIIYAYA AK, ABOU SALEII MT, WILSON K, GRIME SJ, CRrrCHELY M (1990) A study of depression in old age using single-photon emission computerized tomography. Br J Psychiatry 157 [Suppl 91: 76–81

    Google Scholar 

  • UYTDENHOEF P, PORTELONGE P, JACGUY J, CHARLES G, LINKOWSKI P, MENDLEWICZ J (1983) Regional cerebral blood flow and lateralized hemispheric dysfunction in depression. Br J Psychiatry 143: 128–132

    PubMed  CAS  Google Scholar 

  • VALENSTEIN E, HEILMAN KM (1979) Emotional disorders resulting from lesions of the central nervous system. ln: HEILMAN KM, VALENSTEIN E (eds) Clinical neuropsychology. Oxford University Press, New York, pp 413–438

    Google Scholar 

  • VOLK S, KAENDLER SII, WEBER R, GEORGI K, MAUL F,HERTEL A, PFLUG B, HOR G (1992) Evaluation of the effects of total sleep deprivation on cerebral blood flow using single photon emission computerized tomography. Acta Psychiatr Scand 86: 478–483

    PubMed  CAS  Google Scholar 

  • VOLZ HP, RZANNY R, RIEHEMANN S, MAY S, HEGEWALD H, PREUSSI.ER B, HUBNER G, KAISER WA, SAUER H (1998) 31P magnetic resonance spectroscopy in the frontal lobe of major depressed patients. Fur Arch Psychiatry Clin Neurosci 248: 289–295

    CAS  Google Scholar 

  • WINOKUR G (1982) The development and validity of familial subtypes in primary unipolar depression. Pharmacopsychiatry 15: 142–146

    CAS  Google Scholar 

  • WU JC, GILLINJC, BUCHSBAUM MS, I IERSHEY T, JOHNSON JC, BUNNEY WE JR (1992) Effect of sleep deprivation on brain metabolism of depressed patients. Am J Psychiatry 149: 538–543

    PubMed  Google Scholar 

  • We JC, GILLIN JC, BUCHSBAUM MS, CADWEI.LS, LOrTENBERG S, BUNNEY WE JR (1994) PET studies of sleep deprivation in unipolar depression. Neuropsychopharmacology 10 [Suppl]: 876S

    Google Scholar 

  • YATHAM LN, CLARK CC, ZIS AP (2000) A preliminary study of the effects of electroconvulsive therapy on regional brain glucose metabolism in patients with major depression. J ECT 16: 171–176

    PubMed  CAS  Google Scholar 

  • YAZICI K, KAPucu O, ERBAS B, VAROGLU E, GOLEC C, BEKDIK C (1992) Assessment of changes in regional cerebral blood flow in patients with major depression using the Te-99m HMPAO single photon emission tomography method. Eur J Nucl Med 19: 1038–1043

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag/Wien

About this chapter

Cite this chapter

Vollmayr, B. et al. (2002). Neurobiologische Grundlagen. In: Reiderer, P., Laux, G., Pöldinger, W. (eds) Neuro-Psychopharmaka Ein Therapie-Handbuch. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6150-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6150-0_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83647-7

  • Online ISBN: 978-3-7091-6150-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics