Advertisement

Reactive oxygen: its sources and significance in Alzheimer disease

  • G. Perry
  • A. Nunomura
  • A. D. Cash
  • M. A. Taddeo
  • K. Hirai
  • G. Aliev
  • J. Avila
  • T. Wataya
  • S. Shimohama
  • C. S. Atwood
  • M. A. Smith
Part of the Journal of Neural Transmission. Supplementa book series (NEURAL SUPPL, volume 62)

Abstract

Over the past decade, oxidative stress has been established as the earliest cytological feature of Alzheimer disease and an attractive therapeutic target. The major challenges now are establishing the source of the reactive oxygen and what oxidative stress tells us about the etiology of Alzheimer disease. These are complex issues since a variety of enzymatic and nonenzymatic processes are involved in reactive oxygen formation and damage to macromolecules. In this review, we consider disease mechanisms that show the greatest promise for future research.

Keywords

Alzheimer Disease Down Syndrome Dystrophic Neurites Mitochondrial Abnormality Vulnerable Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Corral-Debrinski M,Horton T,Lou MT,Shoffner JM,McKee AC,Beal MF,Graham BH,Wallace DC (1994) Marked changes in mitochondrial DNA deletion levels in Alzheimer brains.Genomics 23:471–476PubMedCrossRefGoogle Scholar
  2. Cuajungco MP,Goldstein LE,Nunomura A,Smith MA,Lim JT,Atwood CS,Huang X,Farrag YW,Perry G,Bush AI (2000) Evidence that the B-amyloid plaques of Alzheimer’s disease represent the redox-silencing and entombment of AB by zinc.J BioI Chern 275:19439–19442CrossRefGoogle Scholar
  3. Hattori N,Kitagawa K,Higashida T,Yagyu K,Shimohama S,Wataya T,Perry G,Smith MA,Inagaki C (1998) Cl--ATPase and Na+/K+-ATPase activities in Alzheimer’s disease brains.Neurosci Lett 254:141–144PubMedCrossRefGoogle Scholar
  4. Hirai K,Aliev G,Nunomura A,Fujioka H,Russell RL,Atwood CS,Johnson AB,Kress Y,Vinters HV,Tabaton M,Shimohama S,Cash AD,Siedlak SL,Harris PLR,Jones PK,Petersen RB,Perry G,Smith MA (2001) Mitochondrial abnormalities in Alzheimer’s disease.J Neurosci 21:3017–3023PubMedGoogle Scholar
  5. Nunomura A,Perry G,Pappolla MA,Wade R,Hirai K,Chiba S,Smith MA (1999) RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease.J Neurosci 19:1959–1964PubMedGoogle Scholar
  6. Nunomura A, Perry G, Pappolla MA, Friedland RP, Hirai K, Chiba S, Smith MA(2000) Neuronal oxidative stress precedes amyloid-B deposition in Down syndrome. J Neuropathol Exp Neurol 59: 1011–1017PubMedGoogle Scholar
  7. Nunomura A,Perry G,Aliev G,Hirai K,Takeda A,Balraj EK,Jones PK,Ghanbari H,Wataya T,Shimohama S,Chiba S,Atwood CS,Petersen RB,Smith MA (2001) Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 60:759–767PubMedGoogle Scholar
  8. Pappolla MA,Omar RA,Chyan Y-J,Ghiso J,Hsiao K,Bozner P,Perry G,Smith MA,Cruz-Sanchez F (2001) Induction of NADPH cytochrome P450 reductase by the Alzheimer B-protein. Amyloid as a “foreign body”. J Neurochem 78:121–128PubMedCrossRefGoogle Scholar
  9. Perez M,Cuadros R,Smith MA,Perry G,Avila J (2000) Phosphorylated, but not native, tau protein assembles following reaction with the lipid peroxidation product, 4hydroxy-2-nonenal.FEBS LeU 486:270--274CrossRefGoogle Scholar
  10. Perry G,Nunomura A,Raina AK,Smith MA (2000) Amyloid-B junkies.Lancet 355:757PubMedCrossRefGoogle Scholar
  11. Perry G, Zhu X, Smith MA (2001) Do neurons have a choice in death? Am J Pathol158: 1–274 G. Perry et al.CrossRefGoogle Scholar
  12. Praprotnik D, Smith MA, Richey PL, Vinters HV, Perry G (1996a) Plasma membrane fragility in dystrophic neurites in senile plaques of Alzheimer’s disease: an index of oxidative stress. Acta Neuropathol 91: 1–5CrossRefGoogle Scholar
  13. Praprotnik D, Smith MA, Richey PL, Vinters HV, Perry G (1996b) Filament heterogeneity within the dystrophic neurites of senile plaques suggests blockage of fast axonal transport in Alzheimer’s disease. Acta Neuropathol 91: 226–235CrossRefGoogle Scholar
  14. Sayre LM, Zelasko DA, Harris PLR, Perry G, Salomon RG, Smith MA (1997) 4Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’s disease. J Neurochem 68: 2092–2097PubMedCrossRefGoogle Scholar
  15. Shimohama S, Tanino H, Kawakami N, Okamura N, Kodama H, Yamaguchi T, Hayakawa T, Nunomura A, Chiba S, Perry G, Smith MA, Fujimoto S (2000) Activation of NADPH oxidase in Alzheimer’s disease brains. Biochem Biophys Res Cornmun 273: 5–9CrossRefGoogle Scholar
  16. Small GW, Komo S, La Rue A, Saxena S, Phelps ME, Mazziotta JC, Saunders AM, Haines JL, Pericak-Vance MA, Roses AD (1996) Early detection of Alzheimer’s disease by combining apolipoprotein E and neuroimaging. AnnNY Acad Sci 802: 7078Google Scholar
  17. Smith CD, Carney JM, Starke-Reed PE, Oliver CN, Stadtman ER, Floyd RA, Markesbery WR (1991) Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci USA 88: 10540-10543CrossRefGoogle Scholar
  18. Smith MA, Taneda S, Richey PL, Miyata S, Yan S-D, Stern D, Sayre LM, Monnier VM, Perry G (1994) Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc Natl Acad Sci USA 91: 5710–5714PubMedCrossRefGoogle Scholar
  19. Smith MA, Perry G, Richey PL, Sayre LM, Anderson VE, Beal MF, Kowall N (1996) Oxidative damage in Alzheimer’s. Nature 382: 120–121 Smith MA, Harris PLR, Sayre LM, Beckman JS, Perry G (1997a) Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J Neurosci 17: 2653–2657Google Scholar
  20. Smith MA, Harris PLR, Sayre LM, Perry G (1997b) Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc Natl Acad Sci USA 94: 9866–9868CrossRefGoogle Scholar
  21. Smith MA, Sayre LM, Anderson VE, Harris PLR, Beal MF, Kowall N, Perry G (1998) Cytochemical demonstration of oxidative damage in Alzheimer disease by immunochemical enhancement of the carbonyl reaction with 2,4-dinitrophenylhydrazine. J Histochem Cytochem 46: 731–735PubMedCrossRefGoogle Scholar
  22. Smith MA, Joseph JA, Perry G (2000) Arson: tracking the culprit in Alzheimer’s disease. Ann NY Acad Sci 924: 35–38PubMedCrossRefGoogle Scholar
  23. Takeda A, Perry G, Abraham NG, Dwyer BE, Kutty RK, Laitinen IT, Petersen RB, Smith MA (2000a) Overexpression of heme oxygenase in neuronal cells, the possible interaction with tau. J Bioi Chern 275: 5395–5399CrossRefGoogle Scholar
  24. Takeda A, Smith MA, Avila J, Nunomura A, Siedlak SL, Zhu X, Perry G, Sayre LM (2000b) In Alzheimer’s disease, heme oxygenase is coincident with Alz50, an epitope of’t induced by 4-hydroxy-2-nonenal modification. J Neurochem 75: 1234-1241Google Scholar
  25. Terry RD (1996) The pathogenesis of Alzheimer disease: an alternative to the amyloid hypothesis. J Neuropathol Exp Neurol 55: 1023–1025PubMedCrossRefGoogle Scholar
  26. Terry RD (2000) Cell death or synaptic loss in Alzheimer disease. J Neuropathol Exp Neurol 59: 1118–1119PubMedGoogle Scholar
  27. Wallace DC, Stugard C, Murdock D, Schurr T, Brown MD (1997) Ancient mtDNA sequences in the human nuclear genome: a potential source of errors in identifying pathogenic mutations. Proc Natl Acad Sci USA 94: 14900–14905PubMedCrossRefGoogle Scholar
  28. Wataya T, Nunomura A, Smith MA, Siedlak SL, Harris PLR, Shimoharna S, Szweda LI, Kaminski MA, Avila J, Price DL, Cleveland DW, Sayre LM, Perry G (2002) High molecular weight neurofilament proteins are physiological substrates of adduction by the lipid peroxidation product hydroxynonenal. J Bioi Chern 277: 4644–4648CrossRefGoogle Scholar
  29. Yan SD, Yan SF, Chen X, Fu J, Chen M, Kuppusamy P, Smith MA, Perry G, Godman GC, Nawroth P, Zweier JL, Stern D (1995) Non-enzymatically glycated tau in Alzheimer’s disease induces neuronal oxidant stress resulting in cytokine gene expression and release of amyloid B-peptide. Nat Med 1: 693–699PubMedCrossRefGoogle Scholar
  30. Zhou F, Zhu X, Castellani RJ, Stimmelymayr R, Perry G, Smith MA, Drew KL (2001) Hibernation, a model of neuroprotection. Am J Pathol 158: 2145–2151PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2002

Authors and Affiliations

  • G. Perry
    • 1
  • A. Nunomura
    • 2
  • A. D. Cash
    • 1
  • M. A. Taddeo
    • 1
  • K. Hirai
    • 3
  • G. Aliev
    • 4
  • J. Avila
    • 5
  • T. Wataya
    • 6
  • S. Shimohama
    • 6
  • C. S. Atwood
    • 1
  • M. A. Smith
    • 1
  1. 1.Institute of PathologyCase Western Reserve UniversityClevelandUSA
  2. 2.Department of AnatomyCase Western Reserve UniversityClevelandUSA
  3. 3.Department of Psychiatry and NeurologyAsahikawa Medical CollegeAsahikawa
  4. 4.Pharmaceutical Research Laboratories I, Pharmaceutical Research DivisionTakeda Chemical Industries Ltd.OsakaJapan
  5. 5.Centro de Biologia MolecularUniversidad Autónoma de MadridMadridSpain
  6. 6.Department of NeurologyKyoto UniversityKyotoJapan

Personalised recommendations