Effects of Cerebrolysin™ on amyloid-β deposition in a transgenic model of Alzheimer’s disease

  • E. Rockenstein
  • M. Mallory
  • M. Mante
  • M. Alford
  • M. Windisch
  • H. Moessler
  • E. Masliah
Part of the Journal of Neural Transmission. Supplementa book series (NEURAL SUPPL, volume 62)


We investigated the potential mechanisms through which Cerebrolysin™, a neuroprotective noothropic agent, might affect Alzheimer’s disease pathology. Transgenic (tg) mice expressing mutant human (h) amyloid precursor protein 751 (APP751) cDNA under the Thy-1 promoter (mThyl-hAPP751) were treated for four weeks with this compound and analyzed by confocal microscopy to asses its effects on amyloid plaque formation and neurodegeneration. In this model, amyloid plaques in the brain are found much earlier (beginning at 3 months) than in other tg models. Quantitative computer-aided analysis with anti-amyloid-β protein (Aβ) antibodies, revealed that Cerebrolysin significantly reduced the amyloid burden in the frontal cortex of 5-month-old mice. Furthermore, Cerebrolysin treatment reduced the levels of Aβ1–42. This was accompanied by amelioration of the synaptic alterations in the frontal cortex of mThyl-hAPP751 tg mice. In conclusion, the present study supports the possibility that Cerebrolysin might have neuroprotective effects by decreasing the production of Af and reducing amyloid deposition.


Frontal Cortex Alzheimer Disease Amyloid Precursor Protein Nontg Mouse Synaptophysin Immunoreactivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alford MF, Masliah E, Hansen LA, Terry RD (1994) A simple dot-immunobinding assay for the quantification of synaptophysin-like immunoreactivity in human brain. J Histochem Cytochem 42: 283–287PubMedCrossRefGoogle Scholar
  2. Arai H, Lee V-Y, Messinger ML, Greenberg BD, Lowery DE, Trojanowski JQ (1991) Expression patterns of (3-amyloid precursor protein ((3-APP) in neural and nonneural tissues from Alzheimer’s disease and control subjects. Ann Neurol 30: 686–693PubMedCrossRefGoogle Scholar
  3. Beach TG, Walker R, McGeer EG (1989) Patterns of gliosis in Alzheimer’s disease and aging cerebrum. Glia 2: 420–436PubMedCrossRefGoogle Scholar
  4. Brown DF, Risser RC, Bigio EH, Tripp P, Stiegler A, Welch E, Eagan KP, Hladik CL, White CL (1998) Neocortical synapse density and Braak stage in the Lewy body variant of Alzheimer disease: a comparison with classic Alzheimer disease and normal aging. J Neuropathol Exp Neurol 57: 955–960PubMedCrossRefGoogle Scholar
  5. Buttini M, Orth M, Bellosta S, Akeefe H, Pitas RE, Wyss-Coray T, Mucke L, Mahley RW (1999) Expression of human apolipoprotein E3 or E4 in the brains of Apoe ¡ªI¡ª mice: isoform-specific effects on neurodegeneration. J Neurosci 19: 4867–4880PubMedGoogle Scholar
  6. Clark RF, Goate AM (1993) Molecular genetics of Alzheimer’s disease. Arch Neurol 50:1164–1172PubMedCrossRefGoogle Scholar
  7. Cole GM, Masliah E, Huynh TV, DeTeresa R, Terry RD, Okudea C, Saitoh T (1989) An antiserum against amyloid (3-protein precursor detects a unique peptide in Alzheimer brain. Neurosci Lett 100: 340–346PubMedCrossRefGoogle Scholar
  8. Cras P, Kawai M, Lowery D, Gonzalez-DeWhitt P, Greenberg B, Perry G (1991) Senile plaque neurites in Alzheimer disease accumulate amyloid precursor protein. Proc Natl Acad Sci USA 88: 7552–7556PubMedCrossRefGoogle Scholar
  9. Everall IP, Heaton RK, Marcotte TD, Ellis RJ, McCutchan JA, Atkinson JH, Grant I, Mallory M, Masliah E, the HNRC Group (1999) Cortical synaptic density is reduced in mild to moderate human immunodeficiency virus neurocognitive disorder. Brain Pathol 9: 209–217Google Scholar
  10. Francis-Turner L, Valouskova V (1996) Nerve growth factor and nootropic drug Cerebrolysin but not fibroblast growth factor can reduce spatial memory impairment elicited by fimbria-fornix transection: short-term study. Neurosci Lett 202:1–4CrossRefGoogle Scholar
  11. Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemes J, Donaldson T, Gillespie F, Guido T, Hagopian S, Johnson-Wood K, Khan K, Lee M, Leibowitz P, Lieberburg I, Little S, Masliah E, McConlogue L, Montoya-Zavala M, Mucke L, Paganini L, Penniman E, Power M, Schenk D, Seubert P, Snyder B, Soriano F, Tan H, Vitale J, Wadsworth S, Wolozin B, Zhao J (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373: 523–527PubMedCrossRefGoogle Scholar
  12. Goate A, Chartier-Harlin M-C, Mullan M, Brown J, Crawford F, Fidani L, Guiffra L, Haynes A, Irving N, James L, Mant R, Newton P, Rooke K, Roques P, Talbot C, Williamson R, Rossor M, Owen M, Hardy J (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349: 704PubMedCrossRefGoogle Scholar
  13. Hsia AY, Masliah E, McConlogue L, Yu G-Q, Tatsuno G, Hu K, Kholodenko D, Malenka RC, Nicoll RA, Mucke L (1999) Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc Natl Acad Sci USA 96: 3228–3233PubMedCrossRefGoogle Scholar
  14. Knowless RB, Gomez-Isla T, Hyman BT (1998) Abeta associated neuropil changes: correlation with neuronal loss and dementia. J Neuropathol Exp Neurol 57: 1122–1130CrossRefGoogle Scholar
  15. Lim GP, Yang F, Chu T, Chen P, Beech W, Teter B, Tran T, Ubeda O, Ashe KH, Frautschy SA, Cole GM (2000) Ibuprofen suppresses plaque pathology and inflammation in a mouse model of Alzheimer’s disease. J Neurosci 20: 5709–5714PubMedGoogle Scholar
  16. Mallory M, Honer W, Hsu L, Johnson R, Masliah E (1999) In vitro synaptotrophic effects of Cerebrolysin in NT2N cells. Acta Neuropathol 97: 437–446PubMedCrossRefGoogle Scholar
  17. Martin LJ, Cork LC, Koo EH, Sisodia SS, Weidemann A, Beyreuther K, Masters C, Price DL (1989) Localization of amyloid precursor protein (APP) in brains of young and aged monkeys. Soc Neurosci Abstr 15: 23Google Scholar
  18. Masliah E, Rockenstein E (2000) Genetically altered transgenic models of Alzheimer’s disease. J Neural Transm [Suppl] 59: 175–183Google Scholar
  19. Masliah E, Mallory M, Hansen L, Alford M, Albright T, Terry R, Shapiro P, Sundsmo M, Saitoh T (1991a) Immunoreactivity of CD45, a protein phosphotyrosine phosphatase, in Alzheimer disease. Acta Neuropathol 83:12–20CrossRefGoogle Scholar
  20. Masliah E, Terry RD, Alford M, DeTeresa RM, Hansen LA (1991b) Cortical and subcortical patterns of synaptophysin-like immunoreactivity in Alzheimer disease. Am J Pathol 138: 235–246Google Scholar
  21. Masliah E, Ellisman M, Carragher B, Mallory M, Young S, Hansen L, DeTeresa R, Terry RD (1992a) Three-dimensional analysis of the relationship between synaptic pathology and neuropil threads in Alzheimer disease. J Neuropathol Exp Neurol 51: 404–414CrossRefGoogle Scholar
  22. Masliah E, Mallory M, Ge N, Saitoh T (1992b) Amyloid precursor protein is localized in growing neurites of neonatal rat brain. Brain Res 593: 323–328CrossRefGoogle Scholar
  23. Masliah E, Mallory M, Alford M, DeTeresa R, Iwai A, Saitoh T (1997) Molecular mechanisms of synaptic disconnection in Alzheimer’s disease. In: Hyman BT, Duyckaerts C, Christen Y (eds) Connections, cognition and Alzheimer’s disease, Springer, Berlin Heidelberg New York Tokyo, pp 121–140CrossRefGoogle Scholar
  24. Masliah E, Armasolo F, Veinbergs I, Mallory M, Samuel W (1999) Cerebrolysin ameliorates performance deficits and neuronal damage in apolipoprotein E-deficient mice. Pharmacol Biochem Bev 62: 239–245CrossRefGoogle Scholar
  25. Masters CL, Simms G, Weidemann A, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82: 4245–4249PubMedCrossRefGoogle Scholar
  26. Moore CL, Diehl TS, Selkoe DJ, Wolfe MS (2000) Toward the characterization and identification of gamma-secretases using transition-state analogue inhibitors. Ann NY Acad Sci USA 920:197–205CrossRefGoogle Scholar
  27. Mucke L, Masliah E, Johnson WB, Ruppe MD, Rockenstein EM, Forss-Petter S, Pietropaolo M, Mallory M, Abraham CR (1994) Synaptotrophic effects of human amyloid p protein precursors in the cortex of transgenic mice. Brain Res 666: 151¡ª 167PubMedCrossRefGoogle Scholar
  28. Mucke L, Masliah E, Yu G-Q, Mallory M, Rockenstein EM, Tatsuno G, Hu K, Kholodenko D, Johnson-Wood K, McConlogue L (2000) High-level neuronal expression of Abeta 1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20: 4050–4058PubMedGoogle Scholar
  29. Reinprecht I, Gschanes A, Windisch M, Fachbach G (1999) Two peptidergic drugs increase the synaptophysin immunoreactivity in brains of 24-month-old rats. Histochem J 31: 395–401PubMedCrossRefGoogle Scholar
  30. Rockenstein EM, McConlogue L, Tan H, Power M, Masliah E, Mucke L (1995) Levels and alternative splicing of amyloid (3 protein precursor (APP) transcripts in brains of APP transgenic mice and humans with Alzheimer’s disease. J Biol Chem 270:28257–28267PubMedCrossRefGoogle Scholar
  31. Rockenstein E, Mallory M, Mante M, Alford M, Masliah E (2001) Early formation of mature A(3 deposits in a mutant APP transgenic model. J Neurosci Res 66: 573–582PubMedCrossRefGoogle Scholar
  32. Rogers J, Luber-Narod J, Styren SD, Civin WH (1988) Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease. Neurobiol Aging 9: 339–349PubMedCrossRefGoogle Scholar
  33. Rossner S, Ueberham U, Schliebs R, Perez-Polo JR, Bigl V (1998) The regulation of amyloid precursor protein metabolism by cholinergic mechanisms and neurotrophin receptor signaling. Prog Neurobiol 56: 541–569PubMedCrossRefGoogle Scholar
  34. Ruther E, Ritter R, Apecechea M, Freytag S, Windisch M (1994a) Efficacy of the peptidergic nootropic drug cerebrolysin in patients with senile dementia of the Alzheimer’s type (SDAT). Pharmacopsychiatry 27: 32–40CrossRefGoogle Scholar
  35. Ruther E, Ritter R, Apecechea M, Freitag S, Windisch M (1994b) Efficacy of Cerebrolysin in Alzheimer’s disease. In: Jellinger KA, Ladurner G, Windisch M (eds) New trends in the diagnosis and therapy of Alzheimer’s disease. Springer, Wien New York, pp 131–141CrossRefGoogle Scholar
  36. Ruther E, Ritter R, Apecechea M, Freytag S, Gmeinbauer R, Windisch M (2000) Sustained improvements in patients with dementia of Alzheimer’s type (DAT) 6 months after termination of Cerebrolysin therapy. J Neural Transm 107: 815–829PubMedCrossRefGoogle Scholar
  37. Satou T, Itoh T, Tamai Y, Ohde H, Anderson AJ, Hashimoto S (2000) Neurotrophic effects of FPF-1070 (Cerebrolysin) on cultured neurons from chicken embryo dorsal root ganglia, ciliary ganglia, and sympathetic trunks. J Neural Transm 107:1253–1262PubMedCrossRefGoogle Scholar
  38. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Liao Z, Lieberburg I, Motter R, Mutter L, Soriano F, Shopp G, Vasquez N, Vandevert C, Walker S, Wogulis M, Yednock T, Games D, Seubert P (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177PubMedCrossRefGoogle Scholar
  39. Selkoe DJ (1989) Amyloid βprotein precursor and the pathogenesis of Alzheimer’s disease. Cell 58: 611–612PubMedCrossRefGoogle Scholar
  40. Sisodia SS, Koo EH, Beyreuther K, Unterbeck A, Price DL (1990) Evidence that (3-amyloid protein in Alzheimer’s disease is not derived by normal processing. Science 248: 492–494PubMedCrossRefGoogle Scholar
  41. Terry RD, Peck A, DeTeresa R, Schechter R, Horoupian DS (1981) Some morphometric aspects of the brain in senile dementia of the Alzheimer type. Ann Neurol 10: 184–192PubMedCrossRefGoogle Scholar
  42. Terry RD, Hansen L, Masliah E (1994) Structural basis of the cognitive alterations in Alzheimer disease. In: Terry RD, Katzman R (eds) Alzheimer disease. Raven Press, New York, pp 179–196Google Scholar
  43. Toggas SM, Masliah E, Rockenstein EM, Mucke L (1994) Central nervous system damage produced by expression of the HIV-1 coat protein gpl20 in transgenic mice. Nature 367:188–193PubMedCrossRefGoogle Scholar
  44. Veinbergs I, Mante M, Mallory M, Masliah E (2000) Neurotrophic effects of Cerebrolysin in animal models of excitotoxicity. J Neural Transm 59: 273–280Google Scholar
  45. Windholz E, Gschanes A, Windisch M, Fachbach G (2000) Two peptidergic drugs increase the synaptophysin immunoreactivity in brains of 6-week-old rats. Histochem J 32: 79–84PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2002

Authors and Affiliations

  • E. Rockenstein
    • 1
  • M. Mallory
    • 1
  • M. Mante
    • 1
  • M. Alford
    • 1
  • M. Windisch
    • 3
  • H. Moessler
    • 4
  • E. Masliah
    • 1
    • 2
  1. 1.Department of NeurosciencesUniversity of California San DiegoLa JollaUSA
  2. 2.Department of PathologyUniversity of California San Diego, School of MedicineLa JollaUSA
  3. 3.Institute of Experimental PharmacologyJSW-RESEARCHGraz
  4. 4.EBEWE Pharmaceuticals, Research DivisionUnterachAustria

Personalised recommendations