Nicotinic receptor modulation: Advantages for successful Alzheimer’s disease therapy

  • H. Geerts
  • L. Finkel
  • R. Carr
  • A. Spiros
Part of the Journal of Neural Transmission. Supplementa book series (NEURAL SUPPL, volume 62)


Galantamine is a modest acetylcholinesterase inhibitor (AChEI) that is also an allosteric potentiating ligand (APL) of nicotinic acetylcholine receptors (nAChRs). In this report, these two effects are shown to be dependent upon each other using a realistic computer model of the cholinergic synaptic cleft. The model is based upon realistic estimates of the anatomy of a neuronal synapse, the kinetic states of pre-and postsynaptic nAChRs, and the acetylcholinesterase enzyme.The number of open postsynaptic nAChRs per action potential is a measure of cholinergic neurotransmission. Using mathematical equations and published data, the effect of the AChEI and APL actions of galantamine is quantitatively described and compared to the effects of pure AChEIs. The model shows that galantamine ¡ª compared to similar concentrations of pure AChEIs ¡ª is able to compensate for its somewhat modest effect on the cholinesterase enzyme with its allosteric modulatory effects that include the additional benefit of a lower degree of receptor desensitization.


Nicotinic Receptor Nicotinic Acetylcholine Receptor AChE Inhibition Receptor Desensitization Neuronal Synapse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alkondon M, Pereira EF, Cortes WS, Maelicke A, Albuquerque EX (1997) Choline is a selective agonist of alpha7 nicotinic acetylcholine receptors in the rat brain neurons. Eur J Neurosci 9: 2734–2742PubMedCrossRefGoogle Scholar
  2. Anglister L, Stiles JR, Salpeter MM (1994) Acetylcholinesterase density and turnover number at frog neuromuscular junctions, with modeling of their role in synaptic function. Neuron 12: 783–794PubMedCrossRefGoogle Scholar
  3. Auerbach A, Akk G (1998) Desensitization of mouse nicotinic acetylcholine receptor channels. A two-gate mechanism. J Gen Physiol 112:181–197PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bartus RT (2000) On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp Neurol 163: 495–529PubMedCrossRefGoogle Scholar
  5. Blesa R (2000) Galantamine: therapeutic effects beyond cognition. Dement Geriatr Cogn Disord ll[Suppl 1]: 28–34CrossRefGoogle Scholar
  6. Bowen DM, Smith CB, White P, Davison AN (1976) Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain 99: 459–496PubMedCrossRefGoogle Scholar
  7. Understanding nicotinic receptor modulation in AD therapy 215Google Scholar
  8. Buisson B, Gopalakrishnan M, Arneric SP, Sullivan JP, Bertrand D (1996) Human alpha4beta2 neuronal nicotinic acetylcholine receptor in HEK 293 cells: a patch-clamp study. J Neurosci 16: 7880–7891PubMedGoogle Scholar
  9. Court J, Martin-Ruiz C, Piggott M, Spurden D, Griffiths M, Perry E (2001) Nicotinic receptor abnormalities in Alzheimer’s disease. Biol Psychiatry 49: 175–184PubMedCrossRefGoogle Scholar
  10. Davies P, Maloney AJ (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet ii: 1403Google Scholar
  11. Davis KL, Mohs RC, Marin D, Purohit DP, Perl DP, Lantz M, Austin G, Haroutunian V (1999) Cholinergic markers in elderly patients with early signs of Alzheimer disease. JAMA 281: 1401–1406PubMedCrossRefGoogle Scholar
  12. Dineley KT, Westerman M, Bui D, Bell K, Ashe KH, Sweatt JD (2001) Beta-amyloid activates the mitogen-activated protein kinase cascade via hippocampal alpha7 nicotinic acetylcholine receptors: In vitro and in vivo mechanisms related to Alzheimer’s disease. J Neurosci 21: 4125–4133PubMedGoogle Scholar
  13. Elhamdani A, Palfrey HC, Artalejo CR (2001) Quantal size is dependent on stimulation frequency and calcium entry in calf chromaffin cells. Neuron 31: 819–830PubMedCrossRefGoogle Scholar
  14. Fabian-Fine R,Skehel P,Errington ML,Davies HA, Sher E, Stewart MG,Fine A (2001) Ultrastructural distribution of the alpha7 nicotinic acetylcholine receptor subunit in rat hippocampus.J Neurosci 21: 7993–8003PubMedGoogle Scholar
  15. Kihara T., Shimohama S., Sawada H., Honda K., Nakamizo T., Shibasaki H., Kume T., Akaike A. (2001) alpha 7 nicotinic receptor transduces signals to phosphatidylinositol 3-kinase to block A beta-amyloid-induced neurotoxicity. J Biol Chem 276: 3541–13546Google Scholar
  16. Kuffier SW, Yoshikami D (1975) The number of transmitter molecules in a quantum: an estimate from iontophoretic application of acetylcholine at the neuromuscular synapse. J Physiol 251: 465–482Google Scholar
  17. Kuhl DE, Minoshima S, Frey KA, Foster NL, Kilbourn MR, Koeppe RA (2000) Limited donepezil inhibition of acetylcholinesterase measured with positron emission tomography in living Alzheimer cerebral cortex. Ann Neurol 48: 391–395PubMedCrossRefGoogle Scholar
  18. Lilienfeld S, Parys W (2000) Galantamine: additional benefits to patients with Alzheimer’s disease. Dement Geriatr Cogn Disord ll[Suppl 1]: 19–27PubMedCrossRefGoogle Scholar
  19. Lukas RJ, Changeux JP, Le Novere N, Albuquerque EX, Balfour DJ, Berg DK, Bertrand D, Chiappinelli VA, Clarke PB, Collins AC, Dani JA, Grady SR, Kellar KJ, Lindstrom JM, Marks MJ, Quik M, Taylor PW, Wonnacott S (1999) International Union of Pharmacology. XX. Current status of the nomenclature for nicotinic acetylcholine receptors and their subunits. Pharmacol Rev 51: 397–401PubMedGoogle Scholar
  20. Maelicke A, Samochocki M, Jostock R, Fehrenbacher A, Ludwig J, Albuquerque EX, Zerlin M (2001) Allosteric sensitization of nicotinic receptors by galantamine, a new treatment strategy for Alzheimer’s disease. Biol Psychiatry 49: 279–288PubMedCrossRefGoogle Scholar
  21. Martin-Ruiz CM, Court JA, Molnar E, Lee M, Gotti C, Mamalaki A, Tsouloufis T, Tzartos S, Ballard C, Perry RH, Perry EK (1999) Alpha4 but not alpha3 and alpha7 nicotinic acetylcholine receptor subunits are lost from the temporal cortex in Alzheimer’s disease. J Neurochem 73: 1635–1640PubMedCrossRefGoogle Scholar
  22. Nordberg A, Nilsson-Hakansson L, Adem A, Hardy J, Alafuzoff I, Lai Z, Herrera-Marschitz M, Winblad B (1989) The role of nicotinic receptors in the pathophysiology of Alzheimer’s disease. Prog Brain Res 79: 353–362PubMedCrossRefGoogle Scholar
  23. Nordberg A, Lundqvist H, Hartvig P, Lilja A, Langstrom B (1995) Kinetic analysis of regional (S)(-) HC-nicotine binding in normal and Alzheimer brains ¡ª in vivo assessment using positron emission tomography. Alzheimer Dis Assoc Disord 9: 21–27PubMedCrossRefGoogle Scholar
  24. Ogura H, Kosasa T, Kuriya Y, Yamanishi Y (2000) Comparison of inhibitory activities of donepezil and other cholinesterase inhibitors on acetylcholinesterase and butyrylcholinesterase in vitro. Methods Find Exp Clin Pharmacol 22: 609–613PubMedCrossRefGoogle Scholar
  25. Papke R.L., Meyer E., Nutter T., Uteshev V.V. (2000) a 7 receptor-selective agonists and modes of a 7 receptor activation. Eur J Pharmacol 393:179–195PubMedCrossRefGoogle Scholar
  26. Pereira EF, Alkondon M, Reinhardt S, Maelicke A, Peng X, Lindstrom J, Whiting P, Albuquerque EX (1994) Physostigmine and galanthamine: probes for a novel binding site on the alpha 4 beta 2 subtype of neuronal nicotinic acetylcholine receptors stably expressed in fibroblast cells. J Pharmacol Exp Ther 270: 768–778PubMedGoogle Scholar
  27. Perry EK, Gibson PH, Blessed G, Perry RH, Tomlinson BE (1977) Neurotransmitter enzyme abnormalities in senile dementia. Choline acetyltransferase and glutamic acid decarboxylase activities in necropsy brain tissue. J Neurol Sci 34: 247–265PubMedCrossRefGoogle Scholar
  28. Raskind MA, Peskind ER, Wessel T, Yuan W (2000) Galantamine in AD: a 6-month randomized, placebo-controlled trial with a 6-month extension. Neurology 54: 2261–2268PubMedCrossRefGoogle Scholar
  29. Samochocki M, Zerlin M, Jostock R, Groot Kormelink PJ, Luyten WH, Albuquerque EX, Maelicke A (2000) Galantamine is an allosterically potentiating ligand of the human alpha4/beta2 nAChR. Acta Neurol Scand [Suppl] 176: 68–73CrossRefGoogle Scholar
  30. Schrattenholz A, Pereira EF, Roth U, Weber KH, Albuquerque EX, Maelicke A (1996) Agonist responses of neuronal nicotinic acetylcholine receptors are potentiated by a novel class of allosterically acting ligands. Mol Pharmacol 49: 1–6PubMedGoogle Scholar
  31. Tariot PN, Solomon PR, Morris JC, Kershaw P, Lilienfeld S, Ding C (2000) A 5-month, randomized, placebo-controlled trial of galantamine in AD. Neurology 54:2269–2276PubMedCrossRefGoogle Scholar
  32. Thomsen T, Kewitz H (1990) Selective inhibition of human acetylcholinesterase by galanthamine in vitro and in vivo. Life Sci 46: 1553–1558PubMedCrossRefGoogle Scholar
  33. Tiraboschi P, Hansen LA, Alford M, Masliah E, Thai LJ, Corey-Bloom J (2000) The decline in synapses and cholinergic activity is asynchronous in Alzheimer’s disease. Neurology 55: 1278–1283PubMedCrossRefGoogle Scholar
  34. Wilcock GK, Lilienfeld S, Gaens E (2000) Efficacy and safety of galantamine in patients with mild to moderate Alzheimer’s disease: multicentre randomised controlled trial. BMJ 321: 1445–1449PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2002

Authors and Affiliations

  • H. Geerts
    • 1
    • 2
  • L. Finkel
    • 2
  • R. Carr
    • 2
  • A. Spiros
    • 2
  1. 1.CNS Discovery ResearchJanssen Research FoundationBeerseBelgium
  2. 2.In Silico BioSciencesJanssenLexingtonUSA

Personalised recommendations