The role of biological markers in the early and differential diagnosis of Alzheimer’s disease

  • A. Kurz
  • M. Riemenschneider
  • A. Drzezga
  • N. Lautenschlager
Part of the Journal of Neural Transmission. Supplementa book series (NEURAL SUPPL, volume 62)


Biological markers can be used to identify the neurodegenerative process of Alzheimer’s disease (AD) and to differentiate it from other brain diseases which may cause similar symptoms. Structural imaging can detect atrophic changes which are largely non-specific and provide little diagnostic information in single patients. Increasing atrophy upon repeated measurement is much more specific to AD. Functional imaging can demonstrate regional alterations of cerebral blood flow and metabolism but is not sufficiently sensitive at the stage of mild dementia. The measurement of neuronal proteins in the cerebrospinal fluid including tau, phospho-tau, and Bamyloid, achieve high diagnostic sensitivity and specificity even at the stage of pre-dementia. Genetic tests for mutations in the amyloid precursor and presenilin genes are applicable in very few cases. Apolipoprotein E genotyping is not useful as a diagnostic test. With respect to the limitations of biological markers clinical expertise will continue to be an essential element of the early and differential diagnosis of AD.


Positron Emission Tomography Mild Cognitive Impairment Alzheimer Disease Mild Dementia Temporal Atrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. American College of Medical Genetics (1995) Consensus statement: statement on use of apolipoprotein E testing for Alzheimer disease. JAMA 274: 1627–1629CrossRefGoogle Scholar
  2. Andreasen N, Minthon L, Vanmechelen E, Vanderstichele H, Davidsson P, Winblad B, Blennow K (1999) Cerebrospinal fluid tau and A ß 42 as predictors of development of Alzheimer’s disease in patients with mild cognitive impairment. Neurosci Lett 273: 5–8PubMedCrossRefGoogle Scholar
  3. Arai H, Ishiguro K, Ohno H, Moriyama M, Hoh N, Okamura N, Matsui T, Morikawa Y, Horikawa E, Kohno H, et al (2000) CSF phosphorylated tau protein and mild cognitive impairment: a prospective study. Exp Neurol166: 201–203Google Scholar
  4. Bartres-Faz D, Junque C, Lpez-Alomar A, Velveny N, Moral P, Casamayor R, Salido A, Bel C, Clemente IC (2001) Neuropsychological and genetic differences between ageassociated memory impairment and mild cognitive impairment entities. JAm Geriatr Soc 49: 985–990CrossRefGoogle Scholar
  5. Braak H, Braak E (1996) Evolution of the neuropathology of Alzheimer’s disease. Acta Neurol Scand [Suppl] 165: 3–12CrossRefGoogle Scholar
  6. Catani M, Cherubini A, Howard R, Tarducci R, Pellicciolo CP, Piccirilli M, Gobbi G, Senin U, Mecocci P (2001) (l)H-MR spectroscopy differentiates mild cognitive impairment from normal brain aging. Neuroreport 12: 2315–2317PubMedCrossRefGoogle Scholar
  7. De Leon MJ, George AE, Golomb J, Tarshish S, Convit A, Kluger A, De-Santi S, McRae T, Ferris SH, Reisberg B, et al (1997) Frequency of hippocampal formation atrophy in normal aging and Alzheimer’s disease. Neurobiol Aging 18: 1–11PubMedCrossRefGoogle Scholar
  8. De Santi S, de Leon MH, Rusinek H, Convit A, Tashish CY, Roche A, Tsui WH, Kandil E, Boppana M, Daisley K, et al (2001) Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol Aging 22: 529–539PubMedCrossRefGoogle Scholar
  9. Fox NC, Warrington EK, Stevens JM, Rossor MN (1996) Atrophy of the hippocampal formation in early familial Alzheimer’s disease. A longitudinal MRI study of at-risk members of a family with an amyloid precursor protein 717 Val-Gly mutation. Ann NY Acad Sci 777: 226–232PubMedCrossRefGoogle Scholar
  10. Galasko D, Chang L, Motter R, Clark CM, Kaye J, Knopman D, Thomas R, Kholodenko D, Schenk D, Lieberburg I, et al (1998) High cerebrospinal fluid tau and low amyloid ß 42 levels in the clinical diagnosis of Alzheimer disease and relation to apolipoprotein E genotype. Arch Neurol 55: 937–945CrossRefGoogle Scholar
  11. Gonzalez RG, Guimaraes AR, Moore GJ, Crawley A, Cupples LA, Growdon JH (1996) Quantiative in vivo 31P magnetic resonance spectroscopy of Alzheimer disease. Alzheimer Dis Assoc Disord 10: 46–52PubMedGoogle Scholar
  12. Hulstaert F, Blennow K, Ivanoiu A, Schoonderwaldt HC, Riemenschneider M, DeDeyn PP, Bancher C, Cras P, Wiltfang J, Mehta PD, et al (1999) Improved discrimination of AD patients using ß-amyloid(l--42) and tau levels in CSF. Neurology 52: 15551562Google Scholar
  13. Jack CR, Petersen RC, Xu YC, Waring SC, O’Brien PC, Tangalos EG, Smith GE, Ivnik RJ, Kokmen E (1997) Medial temporal atrophy in normal aging and very mild Alzheimer’s disease. Neurology 49: 786–794 Biological markers and AD 133Google Scholar
  14. Jelic V, Nordberg A (2000) Early diagnosis of Alzheimer disease with positron emission tomography. Alzheimer Dis Assoc Disord 14: S109–113PubMedCrossRefGoogle Scholar
  15. Jessen F, Block W, Traber F, Keller E, Placke S, Papassotiropoulos A, Lamerichs R, Heun R, Schild HH (2000) Proton MR spectroscopy detects a relative decrease of Nacetylaspartate in the medial temporal lobe of patients with AD. Neurology 55: 684688Google Scholar
  16. Kantarci K, Jack CR, Xu YC, Campeau NG, O’Brien PC, Smith GE, Ivnik RJ, Boeve BF, Kokmen E, Tangalos EG, et al (2000) Regional metabolic patterns in mild cognitive impairment and Alzheimer’s disease: a 1H MRS study. Neurology 55: 210–217PubMedCentralPubMedCrossRefGoogle Scholar
  17. Laakso MP, Partanen K, Riekkinen P, Lehtovirta M, Helkala EL, Hallikainen M, Hiinninen T, Vainio P, Soininen H (1996) Hippocampal volumes in Alzheimer’s disease, Parkinson’s disease with and without dementia, and in vascular dementia: an MRI study. Neurology 46: 678–681PubMedCrossRefGoogle Scholar
  18. Lautenschlager NT, Riemenschneider M, Drzezga A, Kurz AF (20Gl) Primary degenerative mild cognitive impairment: study population, clinical, brain imaging, and biochemical findings. Dement Geriatr Cogn Disord 12: 379–386CrossRefGoogle Scholar
  19. Linn RT, Wolf PA, Bachman DL, Knoefel IE, Cobb JL, Belanger AI Kaplan EF, D’Agostino RB (1995) The ’preclinical phase’ of probable Alzheimer’s disease. A 13year prospective study of the Framingham cohort. Arch Neurol 52: 485–490PubMedCrossRefGoogle Scholar
  20. Maruyama M, Arai H, Sugita M, Tanji H, Higuchi M, Okamura N, Matsui T, Higuchi S, Matsushita S, Yoshida H, et al (2001) Cerebrospinal fluid amyloid beta(1–42) levels in mild cognitive impairment stage of Alzheimer’s disease. Exp Neurol l72: 433–436CrossRefGoogle Scholar
  21. Matsuda H (2001) Cerebral blood flow and metabolic abnormalities in Alzheimer’s disease. Ann Nucl Med 15: 85–92PubMedCrossRefGoogle Scholar
  22. Petersen RC (1995) Normal aging, mild cognitive impairment, and early Alzheimer’s disease. Neurologist 1: 326–344Google Scholar
  23. Rasmusson DX, Brandt J, Steele C, Hedreen JC, Troncoso JC, Folstein MF (1996) Accuracy of clinical diagnosis of Alzheimer disease and clinical features of patients with non-Alzheimer disease neuropathology. Alzheimer Dis Assoc Disord 10: 180188Google Scholar
  24. Riemenschneider M, Buch K, Schmolke M, Kurz A, Guder WG (1997) Diagnosis of Alzheimer’s disease with cerebrospinal fluid tau protein and aspartate aminotransferase. Lancet 350: 784PubMedCrossRefGoogle Scholar
  25. Scheltens P, Karf ES (2000) Contribution of neuroimaging in the diagnosis of Alzheimer’s disease and other dementias. CUff Opin Neurol13: 391–396Google Scholar
  26. Smith AD, Jobst KA (1996) Use of structural imaging to study the progression of Alzheimer’s disease. Br Med Bull 52: 575–586PubMedCrossRefGoogle Scholar
  27. Terajima M, Arai H, Higuchi M, Zhu C, Sasaki H (1996) Elevated cerebrospinal fluid tau: Implications for early diagnosis of Alzheimer’s disase. J Am Geriatr Soc 44: 10121013Google Scholar
  28. Valenzuela MI, Sachdev P (2001) Magnetic resonance spectroscopy in AD. Neuroloy 56: 592–598CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2002

Authors and Affiliations

  • A. Kurz
    • 1
  • M. Riemenschneider
    • 1
  • A. Drzezga
    • 2
  • N. Lautenschlager
    • 3
  1. 1.Departments of PsychiatryTechnical University MünchenMünchenFederal Republic of Germany
  2. 2.Department of Nuclear MedicineTechnische Universität MünchenFederal Republic of Germany
  3. 3.Department of Psychiatry and Behavioural ScienceUniversity of Western AustraliaAustralia

Personalised recommendations