Skip to main content

Stroke: imaging and differential diagnosis

  • Conference paper
Stroke-Vascular Diseases

Summary

Structural and vascular imaging helps to differentiate haemorrhagic from acute ischemic stroke (AIS) and rule out non-stroke causes, as well as identify specific subtypes of stroke such as carotid dissection and venous thrombosis. However, it is negative in most AIS patients within 3–6hrs of onset and thus does not allow efficient patient classification for management purposes. Physiologic neuroimaging with PET, SPECT and combined diffusion- and perfusion-weighted MR gives access to tissue perfusion and cell function/homeostasis. It has near 100% sensitivity in AIS, even in small cortical or brainstem strokes. In middle-cerebral artery (MCA) stroke, physiologic imaging also allows pathophysiological differentiation into four tissue subtypes: i) already irreversibly damaged (“core”); ii) severely hypoperfused (“penumbra”), which represents the main target for therapy; iii) mildly hypoperfused (“oligaemia”), not at risk of infarction unless secondary complications arise; and iv) reperfused/hyperperfused. PET studies have evidenced the penumbra in man, shown its largely cortical topography, documented its anticipated impact on both acute-stage neurological deficit and recovery therefrom, and shown its persistence up to 16hrs after stroke onset in some patients. However, some patients acutely exhibit extensive irreversible damage, which places them at considerable risk of malignant MCA infarction, and others early spontaneous reperfusion, which is almost invariably associated with rapid and complete recovery. Thrombolytics and/or neuroprotective agents would therefore be expected to benefit, and hence should ideally be reserved to, only those patients in whom a substantial penumbra is documented by physiologic neuroimaging, even perhaps beyond the 3 to 6hrs rule. In addition, excluding from thrombolytic therapy those patients with substantial necrotic core should avoid many instances of symptomatic haemorrhagic transformations. Finally, patients with extensive core might benefit from early decompressive surgery, and those with early extensive reperfusion from anti-inflammatory agents. Overall, therefore, the pathophysiologic heterogeneity underlying AIS may account for both the complications from thrombolysis and the limited success of clinical trials of neuroprotective agents, despite apparent benefit in the laboratory. Pathophysiological diagnosis as afforded by neuroimaging should now be incorporated in the design of clinical trials as well as in the routine management of stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman RH, Correia JA, Alpert NM, Baron JC, Gouliamos A, Grotta JC, Brownell GL, Taveras JM (1981) Positron imaging in ischemic stroke disease using compounds labeled with oxygen-15. Arch Neurol 38: 537–543

    Article  PubMed  CAS  Google Scholar 

  • Ahmed N, Nasman P, Wahlgren NG (2000) Effects of intravenous nimodipine on blood pressure and outcome after stroke. Stroke 31:1250–1255

    Article  PubMed  CAS  Google Scholar 

  • Albers GW (1999) Expanding the window for thrombolytic therapy in acute stroke. The potential role of acute MRI for patient selection. Stroke 30: 2230–2237

    Article  PubMed  CAS  Google Scholar 

  • Astrup J, Siesjo BK, Symon L (1981) Thresholds in cerebral ischemia: the ischemic penumbra. Stroke 12: 723–725

    Article  PubMed  CAS  Google Scholar 

  • Baird AE, Warach S (1998) Magnetic resonance imaging in acute stroke. J Cereb Blood Flow Metabol 18: 583–609

    CAS  Google Scholar 

  • Baird AE, Donnan GA, Austin MC, MacKay WJ (1995) Early reperfusion in the “spectacular shrinking deficit” demonstrated by single-photon emission computed tomography. Neurology 45: 1335–1339

    Article  PubMed  CAS  Google Scholar 

  • Baird AE, Benfield A, Schlaug G, Siewert B, Lövblad KO, Edelman RR, Warach S (1997) Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weighted magnetic resonance imaging. Ann Neurol 41: 581–589

    Article  PubMed  CAS  Google Scholar 

  • Baird AE, Lövblad KO, Dashe JF, Connor A, Burzynski C, Schlaug G, Straroselskaya, Edelman R, Warach S (2000) Clinical correlations of diffusion and perfusion lesion volumes in acute ischemic stroke. Cerebrovasc Dis 10: 441–448

    Article  PubMed  CAS  Google Scholar 

  • Barber PA, Davis SM, Darby DG, Desmond PM, Gerraty RP, Yang Q, Donnan GA, Tress BM (1999) Absent middle cerebral artery flow predicts the presence and evolution of the ischemic penumbra. Neurology 52: 1125–1132

    Article  PubMed  CAS  Google Scholar 

  • Baron JC (1999) Mapping the ischaemic penumbra with PET: implications for acute stroke treatment. Cerebrovasc Dis 9:193–201

    Article  PubMed  CAS  Google Scholar 

  • Baron JC (2001) Mapping the ischaemic penumbra with PET: a new approach. Brain 124: 2–4

    Article  PubMed  CAS  Google Scholar 

  • Baron JC, Marchal G (2000) Functional imaging in vascular disorders. In: Mazziotta et al (eds) Brain mapping: the disorders. Academic Press, San Diego, pp 299–316

    Chapter  Google Scholar 

  • Baron JC, Bousser MG, Comar D, et al (1981) Non invasive tomographic study of cerebral blood flow and oxygen metabolism in vivo: potentials, limitations and clinical applications in cerebral ischemic disorders. Eur Neurol 20: 273–284

    Article  PubMed  CAS  Google Scholar 

  • Baron JC, Bousser MG, Rey A, et al (1981) Reversal of focal “misery-perfusion syndrome” by extra-intracranial arterial bypass in hemodynamic cerebral ischemia: a case study with 1 50 positron tomography. Stroke 12: 454–459

    Article  PubMed  CAS  Google Scholar 

  • Baron JC, Frackowiak RSJ, Herholz K, et al (1989) Use of positron emission tomography in the investigation of cerebral hemodynamics and energy metabolism in cerebrovascular disease. J Cereb Blood Flow Metab 9: 723–742

    Article  PubMed  CAS  Google Scholar 

  • Baron JC, von Kummer R, Del Zoppo, GJ (1995) Treatment of acute ischemic stroke: challenging the concept of a rigid and universal time window. Stroke 26: 2219–2221

    Article  PubMed  CAS  Google Scholar 

  • Beaulieu C, et al (1999) Longitudinal magnetic resonance imaging study of perfusion and diffusion in stroke: evolution of lesion volume and correlation with clinical outcome. Ann Neurol 46: 568–578

    Article  PubMed  CAS  Google Scholar 

  • Berrouschot J, Barthel H, von Kummer R, et al (1998) 99m technetium-ethyl-cysteinatedimer single-photon emission CT can predict fatal ischemic brain edema. Stroke 12:2556–2562

    Article  Google Scholar 

  • Berrouschot J, Barthel H, Hesse S, et al (1998) Differentiation between transient ischemic attack and ischemic stroke within the first six hours after onset of symtoms by using 99mTc-ECD-SPECT. J Cereb Blood Flow Metab 18: 921–929

    Article  PubMed  CAS  Google Scholar 

  • Calamante F, et al (1999) Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab 19: 701–735

    Article  PubMed  CAS  Google Scholar 

  • Firlik AD, Rubin G, Yonas H, Wechsler LR (1998a) Relation between cerebral blood flow and neurologic deficit resolution in acute ischemic stroke. Neurology 51:177–182

    Article  PubMed  CAS  Google Scholar 

  • Firlik AD, Yonas H, Kaufmann AM, Wechsler LR, Jungreis CA, Fukui MB, Williams RL (1998b) Relationship between cerebral blood flow and the development of swelling and life-threatening herniation in acute ischemic stroke. J Neurosurg 89: 243–249

    Article  PubMed  CAS  Google Scholar 

  • Fisher M, Albers GW (1999) Application of diffusion-perfusion MRI in acute ischemic stroke. Neurology 52: 1750–1756

    Article  PubMed  CAS  Google Scholar 

  • Furlan M, Marchal G, Viader F, et al (1996) Spontaneous neurological recovery after stroke and the fate of the ischemic penumbra. Ann Neurol 40: 216–226

    Article  PubMed  CAS  Google Scholar 

  • Furlan A, Higashida R, Wechsler L, Gent M, Rowley H, Kase C, Pessin M, Ahuja A, Callahan F, Clark WM, Silver F, Rivera F (1999) Intra-arterial prourokinase for acute ischemic stroke. The PROACT II study: a randomized controlled trial. JAMA 282:2003–2011

    Article  PubMed  CAS  Google Scholar 

  • Gillard JH, Barker PB, Van Zijl PC, Bryan RN, Oppenheimer SM (1996) Proton MR spectroscopy in acute middle cerebral artery stroke. Am J Neuroradiol 17: 873–886

    PubMed  CAS  Google Scholar 

  • Ginsberg MD, Bogousslavsky J (eds) (1998) Cerebrovascular diseases. Blackwell Science, New York, 2067 pp

    Google Scholar 

  • Giubilei F, Lenzi GL, Di Piero V, et al (1990) Predictive value of brain perfusion singlephoton emission computed tomography in acute ischemic stroke. Stroke 21: 895–900

    Article  PubMed  CAS  Google Scholar 

  • Grandin, Duprez TP, Smith AM, Mataigne F, Peeters A, Oppenheim C, Cosnard G (2001) Usefulness of magnetic resonance-derived quantitative measurements of cerebral blood flow and volume in prediction of infarct growth in hyperacute stroke. Stroke 32: 1147–1153

    Article  PubMed  CAS  Google Scholar 

  • Heiss WD, Huber M, Fink GR, Herholz K, Pietryk U, Wagner R, Wienhard K (1992) Progressive derangement of periinfarct viable tissue in ischemic stroke. J Cereb Blood Flow Metab 12: 193–203

    Article  PubMed  CAS  Google Scholar 

  • Heiss WD, Graf R, Lottgen J, Ohta K, Fujita T, Wagner R, Grond M, Wienhard K (1997) Repeat positron emission tomographic studies in transient middle cerebral artery occlusion in cats: residual perfusion and efficacy of postischemic reperfusion. J Cereb Blood Flow Metab 17: 388–400

    Article  PubMed  CAS  Google Scholar 

  • Heiss WD, Grond M, Thiel A, Von Stockhausen HM, Rudolf J, Ghaemi M, Lottgen J, Stenzel C, Pawlik G (1998a) Tissue at risk of infarction rescued by early reperfusion: a positron emission tomography study in systemic recombinant tissue plasminogen activator thrombolysis of acute stroke. J Cereb Blood Flow Metab 18: 1298–1307

    Article  PubMed  CAS  Google Scholar 

  • Heiss WD, Grond M, Thiel A, Ghaemi M, Sobesky J, Rudolf J, Bauer B, Wienhard K (1998b) Permanent cortical damage detected by flumazenil positron emission tomography in acute stroke. Stroke 29: 454–461

    Article  PubMed  CAS  Google Scholar 

  • Heiss W-D, Thiel A, Grond M, et al (1999) Which targets are relevant for therapy of acute ischemic stroke? Stroke 30: 1486–1489

    Article  PubMed  CAS  Google Scholar 

  • Heiss WD, Kracht L, Grond M, Rudolf J, Bauer B, Wienhard K, et al (2000) Early 11Cflumazenil/ H20 positron emission tomography predicts irreversible ischemic cortical damage in stroke patients receiving acute thrombolytic therapy. Stroke 31: 366–369

    Article  PubMed  CAS  Google Scholar 

  • Heiss WD, Kracht LW, Thiel A, Grond M, Pawlik G (2001) Penumbral probability thresholds of cortical flumazenil binding and blood flow predicting tissue outcome in patients with cerebral ischaemia. Brain 124: 20–29

    Article  PubMed  CAS  Google Scholar 

  • Heiss W-D, Forsting M, Diener H-C (2001) Imaging in cerebrovascular diseases. Curr Opin Neurol 14: 67–75

    Article  PubMed  CAS  Google Scholar 

  • Jones TH, Morawetz RE, Crowell RM, et al (1981) Thresholds of focal cerebral ischaemia in awake monkeys. J Neurosurg 54: 773–782

    Article  PubMed  CAS  Google Scholar 

  • Kamada K, Saguer M, Moller M, Wicklow K, Katenhauser M, Kober H, Vieth J (1997) Functional and metabolic analysis of cerebral ischemia using magnetoencephalography and proton magnetic resonance spectroscopy. Ann Neurol 42: 554–563

    Article  PubMed  CAS  Google Scholar 

  • Kidwell C, Saver J, Mattiello J, et al (2000) Thrombolytic reversal of acute human cerebral ischaemic injury shown by diffussion/perfusion magnetic resonance imaging. Ann Neurol 47: 462–469

    Article  PubMed  CAS  Google Scholar 

  • Lassen NA (1966) The luxury perfusion syndrome and its possible relation to acute metabolic acidosis localised within the brain. Lancet 11: 1113–1115

    Article  Google Scholar 

  • Mahagne MH, Darcourt J, Migneco O, Fournier JP, Ducoeur S, Thiercelin D, Bertrand F, Bussiere F, Chatel M, Baron JC (2000) Early 99mTc-ECD brain SPECT in the acute phase of stroke: a strong predictor of neurological recovery. Cerebrovasc Dis 10: 364–373

    Article  PubMed  CAS  Google Scholar 

  • Marchal G, Serrati C, Rioux P, et al (1993) PET imaging of cerebral perfusion and oxygen consumption in acute ischaemic stroke: relation to outcome. Lancet 341: 925–927

    Article  PubMed  CAS  Google Scholar 

  • Marchal G, Rioux P, Serrati C, et al (1995) Value of acute-stage PET in predicting neurological outcome after ischemic stroke: further assessment. Stroke 26: 524–525

    PubMed  CAS  Google Scholar 

  • Marchal G, Beaudouin V, Rioux P, et al (1996) Prolonged persistence of substantial volumes of potentially viable brain tissue after stroke: a correlative PET-CT study with voxel-based data analysis. Stroke 27: 599–606

    Article  PubMed  CAS  Google Scholar 

  • Marchal G, Furlan M, Beaudouin V, et al (1996) Early spontaneous hyperperfusion after stroke: a marker of favorable tissue outcome? Brain 119: 409–419

    Article  PubMed  Google Scholar 

  • Marchal G, Benali K, Iglesias S, et al (1999a) Voxel-based mapping of irreversible tissue damage by PET in the acute stage of ischemic stroke. Brain 123: 2387–2400

    Article  Google Scholar 

  • Marchal G, Young AR, Baron JC (1999b) Early post-ischaemic hyperperfusion: pathophysiological insights from positron emission tomography. J Cereb Blood Flow Metab 19: 467–482

    Article  PubMed  CAS  Google Scholar 

  • Marchal G, Bouvard G, Iglesias S, Sebastien B, Benali K, Defer G, Viader F, Baron JC (2000) Predictive value of 99mTc-HMPAO for neurological outcome/recovery in the acute stage of stroke. Cerebrovasc Dis 10: 8–17

    Article  PubMed  CAS  Google Scholar 

  • Minematsu K, et al (1992) Reversible focal ischemic injury demonstrated by diffusionweighted magnetic resonance imaging in rats. Stroke 23:1304–1310

    Article  PubMed  CAS  Google Scholar 

  • Nakano S, Iseda T, Ikeda T, Yoneyama T, Wakisaka S (2000) Thresholds of ischemia salvageable with intravenous tissue plasminogen activator therapy: evaluation with cerebral blood flow single-photon emission computed tomographic measurements. Neurosurgery 47: 68–73

    PubMed  CAS  Google Scholar 

  • Ogasawara K, Ogawa A, Konno H, Shibanai K, Doi M, Kuroda K, Yoshimoto T (2001) Combination of early and delayed SPET imaging using technetium-99m ethyl cysteinate dimer immediately after local intra-arterial thrombolysis. Eur J Nucl Med 28: 498–505

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim C, Samson Y, Manai R, Lalam T, Vandamme X, Crozier S, Srour A, Cornu P, Dormont D, Rancurel G, Marsault C (2000) Prediction of malignant middle cerebral artery infarction by diffusion-weighted imaging. Stroke 31: 2175–2181

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim C, Grandin C, Samson Y, Smith A, Duprez T, Marsault C, Cosnard G (2001) Is there an apparent diffusion coefficient threshold in predicting tissue viability in hyperacute stroke? Stroke 32: 2486–2491

    Article  PubMed  CAS  Google Scholar 

  • Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. I. Mathematical approach and statistical analysis. Magn Res Med 36: 715–725

    Article  CAS  Google Scholar 

  • Parsons MW, Yang Q, Barber A, Darby DG, Desmond PM, Gerraty RP, Tress BM, Davis SM (2001) Perfusion magnetic resonance imaging maps in hyperacute stroke. Relative cerebral blood flow most accurately identifies tissue destined to infarct. Stroke 32:1581–1587

    Article  PubMed  CAS  Google Scholar 

  • Ramsay SC, Weiller C, Myers R, et al (1992) Monitoring by PET of macrophage accumulation in brain after ischaemic stroke. Lancet 239:1054–1055

    Article  Google Scholar 

  • Read SJ, Hirano T, Abbott DF, et al (1998) Identifying hypoxic tissue after acute ischemic stroke using PET and 18F-fluoromisonidazole. Neurology 51: 1617–1621

    Article  PubMed  CAS  Google Scholar 

  • Read SJ, Hirano T, Abbott DF, Markus R, Sachinidis JI, Tochon-Danguy HJ, Chan JG, Egan GF, Scott AM, Bladin CF, McKay WJ, Donnan GA (2000) The fate of hypoxic tissue on 18F-fluoromisonidazole positron emission tomography after ischemic stroke. Ann Neurol 48: 228–235

    Article  PubMed  CAS  Google Scholar 

  • Røhl L, Østergaard, Simonsen CZ, Vestergaard-Poulsen P, Andersen G, Sakoh M, Le Bihan D, Gyldensted C (2001) Viability thresholds of ischemic penumbra of hyperacute stroke defined by perfusion-weighted MRI and apparent diffusion coefficient. Stroke 32: 1140–1146

    Article  PubMed  Google Scholar 

  • Schlaug G, et al (1997) Time course of the apparent diffusion coefficient (ADC) abnormality in human stroke. Neurology 49:113–119

    Article  PubMed  CAS  Google Scholar 

  • Schlaug G, et al (1999) The ischemic penumbra: operationally defined by diffusion and perfusion MRI. Neurology 53: 1528–1537

    Article  PubMed  CAS  Google Scholar 

  • Senda M, Alpert NM, Mackay BC, Buxton RB, Correia JA, Weise SB, Ackerman RH, Dorer D, Buonanno FS (1989) Evaluation of the 11CO2 positron emission tomographic method for measuring brain pH.II. Quantitative pH mapping in patients with ischemic cerebrovascular diseases. J Cereb Blood Flow Metabol 9: 859–873

    Article  CAS  Google Scholar 

  • Sette G, Baron JC, Young AR, et al (1993) In vivo mapping of brain benzodiazepine receptor changes by positron emission tomography after focal ischemia in the anesthetized baboon. Stroke 24: 2046–2058

    Article  PubMed  CAS  Google Scholar 

  • Shimosegawa E, Hatazawa J, Inugami A, et al (1994) Cerebral infarction within six hours of onset: prediction of completed infarction with technetium-99m-HMPAO SPECT. J Nucl Med 35: 1097–1103

    PubMed  CAS  Google Scholar 

  • Sorensen AG, Buonanno FS, Gonzalez RG, Schwamm LH, Lev MH, Huang-Hellinger FR, Reese TG, Weisskoff RM, Davis TL, Suwanwela N, Can U, Moreira JA, Copen WA, Look RB, Finklestein SP, Rosen BR, Koroshetz WJ (1996) Hyperacute stroke: evaluation with combined multisection diffusion-weighted and hemodynamically weighted echo-planar MR imaging. Radiology 199: 391–401

    PubMed  CAS  Google Scholar 

  • Sperling B, Lassen NA (1993) Hyperfixation of HMPAO in subacute ischemic stroke leading to spuriously high estimates of cerebral blood flow by SPECT. Stroke 24:193–194

    Article  PubMed  CAS  Google Scholar 

  • Syrota A, Samson Y, Boullais C, Wajnberg P, Loc’h C, Crouzel C, Maziere B, Soussaline F, Baron JC (1985) Tomographic mapping of brain intracellular pH and extracellular water space in stroke patients. J Cereb Blood Flow Metabol 5: 358–385

    Article  CAS  Google Scholar 

  • Szabo K, Kern R, Gass A, Hirsch J, Hennerici M (2001) Acute stroke patterns in patients with internal carotid artery disease. A diffusion-weighted magnetic resonance imaging study. Stroke 32:1323–1329

    Article  PubMed  CAS  Google Scholar 

  • Thijs VN, Adami A, Neumann-Haefelin T, Moseley ME, Marks MP, Albers GW (2001) Relationship between severity of MR perfusion deficit and DWI lesion evolution. Neurology 57: 1205–1211

    Article  PubMed  CAS  Google Scholar 

  • Touzani O, Young AR, Derlon J-M, Beaudouin V, Marchal G, Rioux P, Mezenge F, Baron JC, MacKenzie ET (1995) Sequential studies of severely hypometabolic tissue volumes after permanent middle cerebral artery occlusion. A positron emission tomographic investigation in anesthetized baboons. Stroke 26: 2112–2119

    Article  PubMed  CAS  Google Scholar 

  • Touzani O, Young AR, Derlon JM, et al (1997) Progressive impairment of brain oxidative metabolism reversed by reperfusion following middle cerebral artery occlusion in anaesthetized baboons. Brain Res 767: 17–25

    Article  PubMed  CAS  Google Scholar 

  • Ueda T, Hatakeyama T, Kumon Y, et al (1994) Evaluation of risk of hemorrhagic transformation in local intra-arterial thrombolysis in acute ischemic stroke by initial SPECT. Stroke 25: 298–303

    Article  PubMed  CAS  Google Scholar 

  • Warach S, et al (1992) Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology 42: 1717–1723

    Article  PubMed  CAS  Google Scholar 

  • Warach S, et al (1995) Acute human stroke studied by whole brain echo planar diffusionweighted magnetic resonance imaging. Ann Neurol 37: 231–241

    Article  PubMed  CAS  Google Scholar 

  • Wise RJS, Bernardi S, Frackowiak RSJ, et al (1983) Serial observations on the pathophysiology of acute stroke. The transition from ischaemia to infarction as reflected in regional oxygen extraction. Brain 106: 197–222

    Article  PubMed  Google Scholar 

  • Wu O, Koroshetz WJ, Østergaard L, Buonanno FS, Copen WA, Gonzalez G, Rordorf G, Rosen BR, Schwamm LH, Weisskoff RM, Sorensen AG ( 2001) Predicting tissue outcome in acute human cerebral ischemia using combined diffusion — and perfusion-weighted MR imaging. Stroke 32: 933–942

    Article  PubMed  CAS  Google Scholar 

  • Young AR, Touzani O, Derlon JM, Sette G, MacKenzie ET, Baron JC (1997) Early reperfusion in the anesthetized baboon reduces brain damage following middle cerebral artery occlusion. Stroke 28: 632–638

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Wien

About this paper

Cite this paper

Baron, J.C. (2002). Stroke: imaging and differential diagnosis. In: Fleischhacker, W.W., Brooks, D.J. (eds) Stroke-Vascular Diseases. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6137-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6137-1_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83866-2

  • Online ISBN: 978-3-7091-6137-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics