Nuclear Resonances by Extrapolation of Bound States

  • R. G. Lovas
  • N. Tanaka
  • Y. Suzuki
  • K. Varga
Conference paper
Part of the Few Body Systems book series (FEWBODY, volume 13)


Nuclear resonances are decribed by the method of analytic continuation of the coupling constant (ACCC), which is an extrapolation of the trajectory of the S-matrix pole as a function of a potential strength from the boundstate to the unbound-state region. The performance of the ACCC method has been found to be excellent and independent of the nature of the decay channel and of the ratio of the imaginary to the real part of the complex energy. Some problematic states of α+nucleon- and α+α+nucleon-types nuclei have been located.


Oblique Line Halo Nucleus Nuclear Resonance Unbind State Resonance Pole 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.U. Hazi, H.S. Taylor: Phys. Rev. A1, 1109 (1970)ADSGoogle Scholar
  2. 2.
    Y.K. Ho: Phys. Rep. 99, 1 (1983)CrossRefADSGoogle Scholar
  3. 3.
    H. Witala: contribution to this VolumeGoogle Scholar
  4. 4.
    V.I. Kukulin, V.M. Krasnopol’sky: J. Phys. A10, 33 (1977)ADSGoogle Scholar
  5. V. I. Kukulin, V.M. Krasnopol’sky, J. Horáček: Theory of Resonances: Principles and Applications. Dordrecht, Kluwer Academic 1989MATHGoogle Scholar
  6. 5.
    K. Varga, Y. Suzuki: Phys. Rev. C52, 2885 (1995)ADSGoogle Scholar
  7. Y. Suzuki, K. Varga: Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems. Berlin: Springer 1998Google Scholar
  8. 6.
    K. Varga, Y. Suzuki, R.G. Lovas: Nucl. Phys. A571, 447 (1994)ADSGoogle Scholar
  9. 7.
    D.R. Thompson, M. LeMere, Y.C. Tang: Nucl. Phys. A286, 53 (1977)ADSGoogle Scholar
  10. I. Reichsten, Y.C. Tang: ibid. A158, 529 (1970)Google Scholar
  11. 8.
    N. Tanaka, Y. Suzuki, K. Varga: Phys. Rev. C56, 562 (1997)ADSGoogle Scholar
  12. 9.
    N. Tanaka et al.: Phys. Rev. C59, 1391 (1999)ADSGoogle Scholar
  13. 10.
    A. Csótó, R.G. Lovas: Phys. Rev. C53, 1444 (1996)ADSGoogle Scholar
  14. 11.
    A. Csótó, G.M. Hale: Phys. Rev. C55, 536 (1997)ADSGoogle Scholar
  15. 12.
    K. Arai et al.: Phys. Rev. C54, 132 (1996)ADSGoogle Scholar
  16. 13.
    F. Ajzenberg-Selove: Nucl. Phys. A490, 1 (1988)ADSGoogle Scholar
  17. 14.
    M. A. Tiede et. al.: Phys. Rev. C52, 1315 (1995)ADSGoogle Scholar

Copyright information

© Springer-Verlag 2001

Authors and Affiliations

  • R. G. Lovas
    • 1
  • N. Tanaka
    • 2
    • 3
  • Y. Suzuki
    • 2
  • K. Varga
    • 1
    • 2
  1. 1.Institute of Nuclear ResearchDebrecenHungary
  2. 2.Department of PhysicsNiigata UniversityNiigataJapan
  3. 3.Secom Information System Co., LtdMitaka, TokyoJapan

Personalised recommendations