A Curious Aspect of the Atomic Ionization Process Caused by Nuclear Decay

  • Y. Nogami
  • W. van Dijk
Part of the Few Body Systems book series (FEWBODY, volume 13)


When the nucleus of an atom decays by emitting an a particle, the surrounding electrons are perturbed and the atom may be ionized. Practically all calculations so far done for this ionization process are based on Migdal’s method in which the a particle is treated as a classical point charge that is emitted by the nucleus at a certain time. Migdal’s method yields the ionization probability that is in reasonable agreement with experiment. We examine a fully quantum mechanical method in which the a particle is represented by a Schrodinger wave that slowly leaks out from the nucleus. This method leads to the ionization probability that is orders of magnitude smaller than the one that follows from Migdal’s method. We emphasize that the ionization process is triggered by a single decay-event. We argue that the failure of our fully quantum mechanical method is a manifestation of the inability of the wave function to describe a single event. Similar aspects of the atomic ionization due to nuclear β decay and of bremsstrahlung in α decay are also discussed.


Wave Function Ionization Process Decay Process Atomic Ionization Ionization Probability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Migdal: J. Phys. (USSR) 4, 449 (1941)Google Scholar
  2. 2.
    J.S. Levinger: Phys. Rev. 90, 11 (1953)MATHADSCrossRefGoogle Scholar
  3. H.J. Fishbeck, M.S. Freedman: Phys. Rev. Lett. 34, 173 (1975); Phys. Rev. A 15, 162 (1977)ADSCrossRefGoogle Scholar
  4. 3.
    G. Gamow: Z. Phys. 51, 204 (1928)ADSCrossRefGoogle Scholar
  5. E.U. Condon, R.W. Gurney: Nature 112, 439 (1928); Phys. Rev. 33, 127 (1929)Google Scholar
  6. 4.
    F. Kataoka, Y. Nogami, W. van Dijk: J. Phys. A Math. Gen. 33, 5547 (2000)MATHADSCrossRefGoogle Scholar
  7. 5.
    M. Moshinsky: Phys. Rev. 84, 525 (1951); 88, 625 (1952)MATHADSMathSciNetCrossRefGoogle Scholar
  8. W. van Dijk, Y. Nogami: Phys. Rev. Lett. 83, 2867 (1999)ADSCrossRefGoogle Scholar
  9. 6.
    W. van Dijk, F. Kataoka, Y. Nogami: J. Phys. A Math. Gen. 32, 6347 (1999)MATHADSCrossRefGoogle Scholar
  10. 7.
    A.P. French, E.F. Taylor: An Introduction to Quantum Mechanics, New York, W.W. Norton and Co. Inc. 1978, p. 407Google Scholar
  11. 8.
    L. Lapidus: Am. J. Phys. 43, 790 (1975); 49, 807 (1981)ADSCrossRefGoogle Scholar
  12. Y. Nogami, M. Vallieres, W. van Dijk: Am. J. Phys. 44, 886 (1976)ADSCrossRefGoogle Scholar
  13. 9.
    L.I. Schiff: Quantum Mechanics, third ed., New York, McGraw-Hill Book Co. 1968, p. 297Google Scholar
  14. A. Messiah: Mãcanique Quantique, Vol. II, Paris: Dunod 1962, p. 650Google Scholar
  15. 10.
    A. Migdal, V. Krainov: Approximation Methods in Quantum Mechanics, translated by A.J. Leggett, New York: W.A. Benjamin, Inc. 1969, pp. 73–76Google Scholar
  16. 11.
    D. Bohm: Quantum Theory, Englewood Cliffs: Prentice-Hall, Inc. 1951, pp. 508–509Google Scholar
  17. 12.
    D.S. Onley, A. Kumar: Am. J. Phys. 60, 432 (1992)ADSCrossRefGoogle Scholar
  18. 13.
    A. D’Arrigo, N.V. Eremin, G. Fazio, G. Gardina, M.G. Glotova, T.V. Klochko, M. Sacchi, A. Tacone: Phys. Lett. B 322, 25 (1994)Google Scholar
  19. 14.
    J. Kasugi, H. Yamazaki, N. Kasajima, T. Ohtsuki, H. Yuki: Phys. Rev. Lett 79, 371 (1997); J. Phys. G Nucl. Part. Phys. 23 1451 (1997)ADSCrossRefGoogle Scholar
  20. 15.
    T. Papenbrock, G.F. Bertch: Phys. Rev. Lett. 80, 4141 (1998)ADSCrossRefGoogle Scholar
  21. N. Takigawa, Y. Nozawa, K. Hagino, A. Ono, D.M. Brink: Phys. Rev. C 59, R593 (1999)ADSGoogle Scholar
  22. 16.
    C.A. Bertulani, D.T. de Paula, V.G. Zelevinsky: Phys. Rev. C 60, 031602 (1999)ADSGoogle Scholar
  23. 17.
    A.M. Frolov, V.H. Smith, Jr.: Phys. Rev. A 58, 1212 (1998)ADSCrossRefGoogle Scholar
  24. 18.
    D. Bohm: Phys. Rev. 85, 166, 180 (1952)ADSMathSciNetCrossRefGoogle Scholar
  25. Y. Nogami, F.M. Toyama, W. van Dijk: Phys. Lett. A 270, 279 (2000)MATHMathSciNetCrossRefGoogle Scholar
  26. 19.
    J. Révai, Y. Nogami: Few-Body Systems 13, 75 (1992)ADSCrossRefGoogle Scholar
  27. 20.
    G. Bauer, F. Rösel, D. Trautman: J. Phys. B At. Mol. Phys. 16, L419 (1983)ADSCrossRefGoogle Scholar
  28. 21.
    H.G. Dehmelt: Bull. Am. Phys. Soc. 20, 60 (1975)Google Scholar
  29. 22.
    W. Nagourney, J. Sandberg, H. Dehmelt: Phys. Rev. Lett. 56, 2797 (1986)Google Scholar
  30. Th. Sauter, W. Neuhauser, R. Blatt, P.E. Poshek: Phys. Rev. Lett. 57, 1696 (1986)ADSCrossRefGoogle Scholar
  31. J.C. Bergquist, R.G. Hulet, W.M. Itano, D.J. Weinland: Phys. Rev. Lett. 57, 1699 (1986)ADSCrossRefGoogle Scholar
  32. 23.
    M.B. Plenio, P.L. Knight: Rev. Mod. Phys. 70,101 (1998)ADSCrossRefGoogle Scholar
  33. G.C. Hegerfeldt: Fortschr. Phys. 46, 6 (1998)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2001

Authors and Affiliations

  • Y. Nogami
    • 1
  • W. van Dijk
    • 1
    • 2
  1. 1.Department of Physics and AstronomyMcMaster UniversityHamiltonCanada
  2. 2.Redeemer University CollegeAncasterCanada

Personalised recommendations