Rotational Three-Body Resonances: A New Adiabatic Approach

  • A. V. Matveenko
  • E. O. Alt
  • H. Fukuda
Part of the Few Body Systems book series (FEWBODY, volume 13)


In the standard adiabatic approach the motion of the fast, light particle (electron) is treated so as to produce an effective potential that governs the motion of the heavy particles (nuclei). The rotational degrees of freedom are then taken into account by adding the centrifugal J(J + 1)-term to the channel potentials and introducing rotational (Coriolis) couplings into conventional close-coupling calculations. Of course, a perturbative treatment of the rotational motion is justified only provided the rotational energy is sufficiently small. If, however, the rotation is as energetic as the motion of the fast particle, both motions should be treated on the same footing in order to produce symmetry-adapted effective potentials for the nuclear motion. Here, we present for the first time a set of adiabatic potentials of this type for two classical adiabatic systems, namely for H+ 2, for states with total angular momentum J = 35 and total spatial parity p = − 1, and for (pdμ)+-ion for states with J = 1 and p = − 1. Comparison with standard adiabatic approaches is very instructive.


Total Angular Momentum Adiabatic State Schrodinger Equation Quantization Axis Magnetic Quantum Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. D. Lin: Phys. Rep. 257, 1 (1995)CrossRefADSGoogle Scholar
  2. 2.
    A. V. Matveenko: Phys. Lett. B129, 11 (1983)ADSGoogle Scholar
  3. 3.
    A. V. Matveenko, Y. Abe: Few-Body Syst. 2, 127 (1987)CrossRefADSGoogle Scholar
  4. 4.
    A. Igarashi, C. D. Lin: Phys. Rev. Lett. 83, 4041 (1999)CrossRefADSGoogle Scholar
  5. 5.
    A. V. Matveenko, H. Fukuda: J. Phys. B29, 1575 (1996)ADSGoogle Scholar
  6. 6.
    A. V. Matveenko, A. C. Fonseca: Few-Body Syst. 11, 81 (1993)CrossRefADSGoogle Scholar
  7. 7.
    A. V. Matveenko: Few-Body Syst., to appear (2001)Google Scholar
  8. 8.
    A. V. Matveenko, E. O. Alt: Hyp. Int. 127, 143 (2000)CrossRefADSGoogle Scholar
  9. 9.
    R. E. Moss, I. A. Sadler: Mol. Phys. 66, 591 (1989)CrossRefADSGoogle Scholar
  10. 10.
    D. A. Varshalovich, A. H. Moskalev, V. K. Khersonsky: Quantum theory of the angular momentum. Leningrad: Nauka 1975Google Scholar
  11. 11.
    A. V. Matveenko: Few-Body Syst. 16, 31 (1994)CrossRefADSGoogle Scholar
  12. 12.
    R. E. Moss: Mol. Phys. 80, 1541 (1993)CrossRefADSGoogle Scholar
  13. 13.
    I. Shimamura: Phys. Rev. A40, 4863 (1989)ADSGoogle Scholar

Copyright information

© Springer-Verlag 2001

Authors and Affiliations

  • A. V. Matveenko
    • 1
  • E. O. Alt
    • 2
  • H. Fukuda
    • 3
  1. 1.Bogoliubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubnaMoscow, Russia
  2. 2.Institut für PhysikUniversität MainzMainzGermany
  3. 3.School of Administration and InformaticsUniversity of ShizuokaShizuoka-shi, Shizuoka 422Japan

Personalised recommendations