Three-Body Resonances in Borromean Halo Nuclei

  • B. Danilin
  • J. S. Vaagen
  • I. J. Thompson
  • M. V. Zhukov
Part of the Few Body Systems book series (FEWBODY, volume 13)


The recent advances in Hyperspherical Harmonics method to investigate Borromean (having no binary bound subsystems) three-body systems are discussed. The spatial and energy-momenta correlations in the three-body continuum revealed the physical nature and the unique structure for true three-body resonances, and for the case of a binary resonance in one of the subsystems. The correlation method has been applied to the low-lying resonances and the dipole soft mode in two-neutron halo nucleus 6He, having only α+n+n continuum in the excitation energy range < 13 MeV.


Halo Nucleus Hyperspherical Harmonic Excitation Energy Range Jacobi System Soft Dipole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.V. Danilin, M.V. Zhukov: Phys. At. Nucl. 56, 460 (1993)Google Scholar
  2. B.V. Danilin, I.J. Thompson, M.V. Zhukov, J.S. Vaagen: Nucl. Phys. A632, 383 (1998)ADSGoogle Scholar
  3. B.V. Danilin et al.:, Few-Body Syst. Suppl. 10, 273 (1999)CrossRefGoogle Scholar
  4. 2.
    E. Garrido, D.V. Fedorov, A.S. Jensen: Nucl. Phys. A617, 153 (1997)ADSGoogle Scholar
  5. 3.
    B.V. Danilin: Izv. AN SSSR, Ser. Fiz., 54, 2212 (1990)Google Scholar
  6. 4.
    A. Csótó: Phys.Lett. B315, 24 (1993); Phys. Rev. C48, 165 (1993); ibid C49, 3035, 2244 (1994)ADSGoogle Scholar
  7. 5.
    G.F. Filippov et al.: Progr. Theor. Phys. 96, 575 (1996)CrossRefADSGoogle Scholar
  8. G.F. Filippov et al.:, J. Math. Phys. 36, 4571 (1995)CrossRefMATHADSMathSciNetGoogle Scholar
  9. 6.
    S.A. Zaitsev, Y.F. Smirnov, A.M. Shirokov: Theor. Math. Phys. 117, 1291 (1998)CrossRefMATHMathSciNetGoogle Scholar
  10. Yu. A. Lurie, A.M. Shirokov: Bui. Rus. Acad. Sci. Phys. Ser. 61, 1665 (1997)Google Scholar
  11. 7.
    V.I. Kukulin et al.: Sov. J. Nucl. Phys. 29, 421 (1979)Google Scholar
  12. N. Tanaka, Y. Suzuki, K. Varga: Phys. Rev. C56, 562 (1997)ADSGoogle Scholar
  13. 8.
    S.N. Ershov, T. Rogde, B.V. Danilin et al.: Phys. Rev. C56, 1483 (1997)ADSGoogle Scholar
  14. 9.
    T. Aumann et a l: Phys. Rev. C59, 1252 (1999)ADSGoogle Scholar
  15. 10.
    I. Tanihata: J. Phys. G22, 157 (1996)ADSGoogle Scholar
  16. 11.
    P.G. Hansen et al.: Ann. Rev. Nucl. Part. Sci. 45, 591 (1995)CrossRefADSGoogle Scholar
  17. 12.
    A.I. Baz’, S.P. Merkuriev: Theor. Mat. Phys. 70, 397 (1976)Google Scholar
  18. 13.
    A.I. Baz’: ZhETF. 70, 397 (1976)Google Scholar
  19. 14.
    V.M. Efimov: Comments Nucl. Part. Phys. 19, 271 (1990)Google Scholar
  20. 15.
    M.V. Zhukov, B.V. Danilin et a l: Phys. Rep. 231, 151 (1993)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2001

Authors and Affiliations

  • B. Danilin
    • 1
  • J. S. Vaagen
    • 2
  • I. J. Thompson
    • 3
  • M. V. Zhukov
    • 4
  1. 1.RRC The Kurchatov InstituteMoscowRussia
  2. 2.SENTEF, Department of PhysicsUniversity of BergenNorway
  3. 3.Department of PhysicsUniversity of SurreyGuildfordUK
  4. 4.Chalmers University of Technology GöteborgSweden

Personalised recommendations