Continuum Level Density in the Microscopic Cluster Model: Parameters of Resonances

  • K. Arai
  • A. T. Kruppa
Conference paper
Part of the Few Body Systems book series (FEWBODY, volume 13)


Positions and widths of nuclear resonance states of the nucleus 8Be, 5He, and 5Li have been calculated in the microscopic cluster model using real square integrable basis. The imposition of Gamow or scattering asymptotic boundary condition onto the wave function is avoided. The continuum level density smoothed by the Strutinsky averaging procedure is calculated by making use of the eigenvalues of the full and the free Hamiltonian matrices. The continuum level density is connected to the S-matrix and has a Breit-Wigner peak around the resonance energy. This approach is compared with the complex scaling method and with the scattering phase shift calculation.


Resonance Energy Resonance State Resonance Parameter Broad Resonance Integrable Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.I. Kukulin, V.M. Krasnapol’sky, J. Horacek: Theory of Resonances Principles and Applications (Kluwer, Dordrecht, 1989)MATHGoogle Scholar
  2. 2.
    A.U. Hazi, H.S. Taylor: Phys. Rev. A1, 1109 (1970)ADSGoogle Scholar
  3. 3.
    V. A. Mandelshtam, T.R. Ravuri, H.S. Taylor: Phys. Rev. Lett. 70, 1932(1993)Google Scholar
  4. 4.
    Y.K. Ho: Phys. Rep. 99, 1(1993)CrossRefADSGoogle Scholar
  5. N. Moiseyev: Phys. Rep. 302, 211(1998)CrossRefADSGoogle Scholar
  6. 5.
    A.T. Kruppa, R.G. Lovas, B. Gyarmati: Phys. Rev. C37, 383(1988)ADSGoogle Scholar
  7. 6.
    A.T. Kruppa, K. Arai: Phys. Rev. A59, 3556 (1999)ADSGoogle Scholar
  8. 7.
    K. Arai, A.T. Kruppa: Phys. Rev. C60, 064315 (1999)ADSGoogle Scholar
  9. 8.
    V.M. Strutinsky: Nucl. Phys. A95, 420 (1967)ADSGoogle Scholar
  10. 9.
    A. Arima, S. Yoshida: Nucl. Phys. A219, 475 (1974)ADSGoogle Scholar
  11. 10.
    A. Csótó, G. M. Hale: Phys. Rev. C55, 536 (1997)ADSGoogle Scholar

Copyright information

© Springer-Verlag 2001

Authors and Affiliations

  • K. Arai
    • 1
  • A. T. Kruppa
    • 2
  1. 1.Department of PhysicsNiigata UniversityNiigataJapan
  2. 2.Institute of Nuclear Research of the Hungarian Academy of SciencesDebrecenHungary

Personalised recommendations