Structure of Continuum States in Neutron Drip-Line Nuclei

  • Kiyoshi Katō
  • Takayuki Myo
  • Shigeyoshi Aoyama
  • Kiyomi Ikeda
Conference paper
Part of the Few Body Systems book series (FEWBODY, volume 13)


It is shown that the complex scaling method is very useful in not only calculating the resonance energies and widths but also studying the structure of continuum states of many-body systems. Using the extended completeness relation consisting of bound, resonant and continuum solutions for the complex-scaled Hamiltonian, the strength function of a transition operator is expressed in the corresponding three terms. This method is applied to the electromagnetic dissociation reaction of 6He which is described by a 4He+n+n three-body model. The dipole transition strength distribution in the continuum states is discussed to have a low-energy enhancement coming dominantly from the break-up transition to 5He(3/2)+n.


Continuum State Strength Distribution Strength Function Resonance Pole Complex Energy Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Tanihata: J. Phys. G22, 157 (1996)ADSGoogle Scholar
  2. 2.
    B. Danilin: contribution in this workshopGoogle Scholar
  3. 3.
    K. Ikeda: contribution in this workshopGoogle Scholar
  4. 4.
    M.V. Zhukov, B.V. Danilin, D.F. Fedorov, J.M. Bang, I.J. Thompson, J.S. Vaagen: Phys. Rep. 231, 151 (1993)CrossRefADSGoogle Scholar
  5. 5.
    J. Aguilar, J.M. Combes: Commun. Math. Phys. 22, 269 (1971)CrossRefMATHADSMathSciNetGoogle Scholar
  6. 6.
    E. Balslev, J.M. Combes: Commun. Math. Phys. 22, 280 (1971)CrossRefMATHADSMathSciNetGoogle Scholar
  7. 7.
    B. Simon: Commun. Math. Phys. 27, 1 (1972)CrossRefMATHADSGoogle Scholar
  8. 8.
    T. Myo, A. Ohnishi, K. Katō: Prog. Theor. Phys. 99, 801 (1998)CrossRefADSGoogle Scholar
  9. 9.
    J. Nuttall, H.L. Cohen: Phys. Rev. 188, 1542 (1969)CrossRefADSGoogle Scholar
  10. 10.
    G. Gyarmati, T. Vertse: Nucl. Phys. A160 (1971)Google Scholar
  11. 11.
    T. Berggren: Nucl. Phys. A109, 265 (1968)ADSGoogle Scholar
  12. W.J. Romo: Nucl. Phys. A116, 617 (1968)ADSGoogle Scholar
  13. 12.
    T. Myo, K. Katō: Prog. Theor. Phys. 98, 561 (1997)CrossRefGoogle Scholar
  14. 13.
    T. Berggren, P. Lind: Phys. Rev. C47, 768 (1993)ADSGoogle Scholar
  15. 14.
    S. Aoyama, S. Mukai, K. Katō, K. Ikeda: Prog. Theor. Phys. 93, 99 (1995); 94, 343 (1995)CrossRefADSGoogle Scholar
  16. 15.
    S. Aoyama: contribution in this workshopGoogle Scholar
  17. 16.
    B.V. Danilin, I.J. Thompson, J.S. Vaagen, M.V. Zhukov: Nucl. Phys. A632, 383 (1998)ADSGoogle Scholar
  18. 17.
    T. Aumann it et al.: Phys. Rev. C59, 1252 (1999)ADSGoogle Scholar

Copyright information

© Springer-Verlag 2001

Authors and Affiliations

  • Kiyoshi Katō
    • 1
  • Takayuki Myo
    • 1
  • Shigeyoshi Aoyama
    • 2
  • Kiyomi Ikeda
    • 3
  1. 1.Division of Physics, Graduate School of ScienceHokkaido UniversitySapporoJapan
  2. 2.Information Processing CenterKitami Institute of TechnologyKitamiJapan
  3. 3.RI-Beam Science LaboratoryRIKENWako, SaitamaJapan

Personalised recommendations