Skip to main content

The New Foundation of Hyperbolic Geometry

  • Chapter
  • First Online:
Selecta Mathematica
  • 180 Accesses

Abstract

The observation that the geometry of Bolyai and Lobachevsky and related geometries can be derived from mere axioms about connection [7–10]1 and the actual development of the hyperbolic plane geometry in terms of concepts of alignment by the Notre Dame school of geometry (1937–46) [1, 3, 4, 5, 13] seem to have attracted little attention.2 Euclidean geometry cannot be developed from axioms about connection (the first of Hilbert’s five groups of axioms) and, in fact, requires postulates about congruence, which are usually supplemented by assumptions about alignment, parallelism , order, and perpendicularity. The aforementioned observation thus reveals an inherent elementary character of hyperbolic geometry which does not seem to bear out Poincaré’s claim that, compared to non-Euclidean geometries, the Euclidean geometry is distinguished by simplicity (it is ‘athe simplest in itself, just as a polynomial of the first degree is simpler than a polynomial of the second degree’).

Numbers in brackets refer to the references at the end of the paper.

Note of the in many ways excellent treatises by borsuk and szmielew.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rice Institute Pamphlets, 27. No. 1 (1940) 80–107.

    Google Scholar 

  2. K. Menger, ‘Statistical Metrics’, Proc. Nat. Acad. Sci. USA28 (1942), 535–537.

    Article  MathSciNet  Google Scholar 

  3. K. Menger, ’Probabilistic Geometry’, ibid. 37 (1951), 226–229.

    MathSciNet  MATH  Google Scholar 

  4. K. Menger, ’Géométrie Générale’, Mem. Sci. Math. Paris, 124 (1954).

    Google Scholar 

  5. A. Wald, ’On a Statistical Generalization of Metric Spaces’, Proc. Nat. Acad. Sci. U.S.A., 29 (1943), 196–197.

    Article  MathSciNet  Google Scholar 

  6. B. Schweizer and A. Sklar, ’Espaces métriques aléatoires’, Comptes Rendus Acad. Sci. Paris, 247 (1958), 2092–2094.

    MathSciNet  MATH  Google Scholar 

  7. B. Schweizer and A. Sklar, ’Statistical Metric Spaces’, Pacif. J. Math. 10 (1960), 313–334.

    Article  MathSciNet  Google Scholar 

  8. A. N. Šerstnev, ’On the Concept of a Stochastic Normalized Space’, Dokl. Akad. Nauk SSSR149 (1963), 380–283.

    MathSciNet  Google Scholar 

  9. For a brief summary, see B. Schweizer, ’Probabilistic Metric Spaces - The First 25 Years’, The New York Statistician19 (1967), 3–6.

    Google Scholar 

  10. B. Schweizer and A. Sklar, ’Statistical Metric Spaces Arising from Sets of Random Variables in Euclidean n-Space’, Teoria Veroyatnostey7 (1962), 456–465.

    MathSciNet  MATH  Google Scholar 

  11. E. Schrödinger, Ann. Phys. 63 (1920), 397–456.

    Article  Google Scholar 

  12. K. Menger, ’Ensembles flous et fonctions aléatoires’, Comptes Rendus Acad. Sci. Paris232 (1951), 2001–2003.

    MathSciNet  MATH  Google Scholar 

  13. R. Bellman, R. Kalaba, and L. Zadeh, ’Abstraction and Pattern Classification’, J. Math. Anal. Appl. 13 (1966), 1–7.

    Article  MathSciNet  Google Scholar 

  14. K. Menger, The Theory of Relativity and Geometry’, in Albert Einstein: Philosopher-Scientist, Evanston, I11., 1949, pp. 472–474.

    Google Scholar 

  15. E.g., in ’An Axiomatic Theory of Functions and Fluents’ in The Axiomatic Method (ed. by Henkin et al.), Amsterdam 1959, pp. 454–473.

    Google Scholar 

  16. ’Mensuration and other Mathematical Connections of Observable Material’ in Measurement, Definitions and Theories (ed. by Churchman and Ratoosh), New York, 1959, pp. 97–128.

    Google Scholar 

  17. Cf. the papers quotes in 11 and ’Variables, Constants, Fluents’ in Current lssues in the Philosophy of Science (ed. by Feigl and Maxwell), New York, 1961 pp. 304–316; ’A Counterpart of Occam’s Razor in Pure and Applied Mathematics’, Synthese 12 (1960), 415–428, and 13 (1961), 331–349.

    Google Scholar 

  18. J. Mehlberg, ’A Classification of Mathematical Concepts’, Synthese14 (1962).

    Google Scholar 

  19. Cf. especially the second paper quoted in 11 and ’Rejoinder to Adams’ in Current lssues in the Philosophy of Science, quoted in 12, p. 318.

    Google Scholar 

  20. Houtappel, Van Dam, and Wigner, ’The Conceptual Basis and Use of the Geometrie Invariance Principles’, Rev. Mod. Phys. 37 (1965), especially pp. 598–600. Added in proof: For explicit references to procedures, see also H. Ekstein, ’Presymmetry’, Phys. Rev. 153 (1967), 1397–1402, and ’Presymmetry II’, Phys. Rev., Aug. 25,1969.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Wien

About this chapter

Cite this chapter

Menger, K. (2002). The New Foundation of Hyperbolic Geometry. In: Schweizer, B., et al. Selecta Mathematica. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6110-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6110-4_37

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7282-7

  • Online ISBN: 978-3-7091-6110-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics