Parameter identification and its application in tunneling

  • Zhihai Xiang
  • Gunter Swoboda
  • Zhangzhi Cen


This paper focuses on discussing the parameter identification techniques in geotechnical engineering. Firstly, the general formulation of the parameter identification process is presented. Secondly, the problem of identifiability is discussed and illustrated by an example of identifying the initial damage parameters of a damage model for jointed rocks. Then the algorithms of designing the optimal layout of displacement measurements are proposed, based on the analyses of the well-posednesses of the parameter identification processes with the Gauss-Newton method and the Complex method, respectively. The validities of these algorithms are proved by some academic and applied engineering examples. Finally, the advantages and drawbacks of the gradient-type methods and the direct-search methods are carefully compared.


Parameter Identification Displacement Field Damage Model Bayesian Estimation Jointed Rock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Amstad C, Kovari K., Grob H. (1984) The report on the displacement mea- suring of Munich subway tunnel line 5/9, Impler Street. Rock Engineering Section, Federal Institute of Technology, Zürich, (in German)Google Scholar
  2. [2]
    Box M. J. (1965) A new method of constrained optimization and a comparison with other methods. The Computer Journal, 8: 42–52.MathSciNetMATHGoogle Scholar
  3. [3]
    Cen Z. Z., Shen X. P. and Xu B. Y. (1994, 1995) A numerical method of material parameter identification in rock-engineering. In: Computer Methods and Advances in Geomechanics (Morgantown), Siriwardane H J, Zaman, eds.,Rotterdam, Balkema: 2229–2234Google Scholar
  4. [4]
    Chicone C. (1999) Ordinary Differential Equations with Applications. Springer Verlag, New YorkMATHGoogle Scholar
  5. [5]
    Cividini A., Jurina L., Gioda G. (1981) Some aspects of ‘characterization’ problems in geomechnics. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 18: 487–503CrossRefGoogle Scholar
  6. [6]
    Cividini A., Maier G. and Nappi A. (1983) Parameter estimation of a static geotechnical model using a Bayes’ approach. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 20: 215–226CrossRefGoogle Scholar
  7. [7]
    Engl H. W., Hanke M. and Neubauer A. (1996) Regularization of inverse prob- lems. Netherlands: Kluwer Academic PublishersCrossRefGoogle Scholar
  8. [8]
    Fadale T. D., Nenarokomov A. V., Emery A. F. (1995) Two approaches to optimal sensor locations. Journal of Heat Transfer, 117: 373–379CrossRefGoogle Scholar
  9. [9]
    Fulton W. (1995) Algebraic topology. Springer Verlag New YorkMATHCrossRefGoogle Scholar
  10. [10]
    Gioda G. and Sakurai S. (1987) Back analysis procedures for the interpretation of field measurements in geomechanics. International Journal for Numerical and Analytical Methods in Geomechanics, 11: 555–583CrossRefGoogle Scholar
  11. [11]
    Gioda G. (1990) Some applications of mathematical programming in geomechanics. In: Numerical Methods and Constitutive Modelling in Geomechanics, Desai, C. S., Gioda, G. eds., Springer Verlag New York, 319–350Google Scholar
  12. [12]
    Haftka R. T., Scott E. P., Cruz J. R. (1998) Optimization and experiments: a survey. Applied Mechanics Reviews, 51: 435–448CrossRefGoogle Scholar
  13. [13]
    Kawamoto T., Ichikawa Y., Kyoya T. (1988) Deformation and fracturing behaviour of discontinuous rock mass and damage mechanics theory. International Journal for Numerical and Analytical Methods in Geomechanics, 12: 1–30MATHCrossRefGoogle Scholar
  14. [14]
    Keeler S. E., Reilly P. M. (1992) The design of experiments when there are errors in all the variables. The Canadian Journal of Chemical Engineering, 70: 774–779CrossRefGoogle Scholar
  15. [15]
    Köppel J., Amstad C, Kovari K. (1983) The measurement of displacement vectors with the TRIVEC borehole probe. In: Field Measurements in Geomechanics, Zurich, K. Kovari ed., Rotterdam: Balkema: 209–239Google Scholar
  16. [16]
    Mitchell T. J. (1974) An algorithm for the construction of “D optimal” experimental designs. Technometrics, 16: 203–220MathSciNetMATHGoogle Scholar
  17. [17]
    Murakami A., Hasegawa T., Sakaguchi H. (1991) Interpretation of ground per- formances based on back analysis results. In: Computer Methods and Advances in Geomechanics, Beer G., Booker J. R. and Carter J. P. eds., Rotterdam: Balkema: 1011–1015Google Scholar
  18. [18]
    Nelder J. A., Mead R. (1964) A simplex method for function minimization. The Computer Journal, 7: 308–313Google Scholar
  19. [19]
    Nocedal J., Wright S. J. (1999) Numerical optimization, Springer Verlag New YorkMATHCrossRefGoogle Scholar
  20. [20]
    Romanov V. G. (1987) Inverse Problems of Mathematical Physics, Utrecht, Vnuscience Press BVGoogle Scholar
  21. [21]
    Spendley W., Hext G. R., Himsworth F R. (1962) Sequential application of simplex designs in optimization and evolutionary operation. Technometrics, 4: 441–461MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    Swoboda G., Yang Q. (1999) An energy-based damage model of geomaterials I. Formulation and numerical results. International Journal of Solids and Structures, 36: 1719–1734MATHCrossRefGoogle Scholar
  23. [23] Swoboda G., Yang Q. (1999) An energy-based damage model of geomaterials II. Deduction of damage evolution laws. International Journal of Solids and Structures, 36: 1735–1755MATHCrossRefGoogle Scholar
  24. [24]
    Swoboda G. (2001) The manual of FINAL 7.1. University of Innsbruck, AustriaGoogle Scholar
  25. [25] Taktak R., Beck J. V. and Scott E. P. (1993) Optimal experimental design for estimating thermal properties of composite materials. International Journal of Heat and Mass Transfer, 36: 2977–2986CrossRefGoogle Scholar
  26. [26]
    Terzaghi K. and Peck R. B. (1948) Soil mechanics in engineering practice. John Wiley and Sons New YorkGoogle Scholar
  27. [27]
    Venclik P. (1994) Development of an inverse back analysis code and its ver- ification. In: Numerical Methods in Geotechnical Engineering (Manchester).Smith I. M. ed., Rotterdam: Balkema: 423–430Google Scholar
  28. [28] Welch W. J. (1982) Branch-and-bound search for experimental designs based on D optimality and other criteria. Technometrics, 24: 41–48MathSciNetMATHGoogle Scholar
  29. [29]
    Yang L. D. (1996) The theory and applications of back analysis in geotechnical problems. Beijing: Science Press, (in Chinese)Google Scholar
  30. [30]
    Yusuke H., Lie W. T., Soumitra G. (1994) Inverse analysis of an embankment on soft clay by extended Bayesian method. International Journal for Numerical and Analytical Methods in Geomechanics, 18: 709–734MATHCrossRefGoogle Scholar
  31. [31]
    Zienkiewicz O. C. (1989) The finite element method. McGraw-Hill LondonGoogle Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Zhihai Xiang
    • 1
  • Gunter Swoboda
    • 2
  • Zhangzhi Cen
    • 1
  1. 1.Department of Engineering MechanicsTsinghua UniversityChina
  2. 2.Institute for Structural Analysis and Strength of MaterialsUniversity of InnsbruckAustria

Personalised recommendations