Skip to main content

Parameter identification and its application in tunneling

  • Chapter
Numerical Simulation in Tunnelling

Abstract

This paper focuses on discussing the parameter identification techniques in geotechnical engineering. Firstly, the general formulation of the parameter identification process is presented. Secondly, the problem of identifiability is discussed and illustrated by an example of identifying the initial damage parameters of a damage model for jointed rocks. Then the algorithms of designing the optimal layout of displacement measurements are proposed, based on the analyses of the well-posednesses of the parameter identification processes with the Gauss-Newton method and the Complex method, respectively. The validities of these algorithms are proved by some academic and applied engineering examples. Finally, the advantages and drawbacks of the gradient-type methods and the direct-search methods are carefully compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amstad C, Kovari K., Grob H. (1984) The report on the displacement mea- suring of Munich subway tunnel line 5/9, Impler Street. Rock Engineering Section, Federal Institute of Technology, Zürich, (in German)

    Google Scholar 

  2. Box M. J. (1965) A new method of constrained optimization and a comparison with other methods. The Computer Journal, 8: 42–52.

    MathSciNet  MATH  Google Scholar 

  3. Cen Z. Z., Shen X. P. and Xu B. Y. (1994, 1995) A numerical method of material parameter identification in rock-engineering. In: Computer Methods and Advances in Geomechanics (Morgantown), Siriwardane H J, Zaman, eds.,Rotterdam, Balkema: 2229–2234

    Google Scholar 

  4. Chicone C. (1999) Ordinary Differential Equations with Applications. Springer Verlag, New York

    MATH  Google Scholar 

  5. Cividini A., Jurina L., Gioda G. (1981) Some aspects of ‘characterization’ problems in geomechnics. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 18: 487–503

    Article  Google Scholar 

  6. Cividini A., Maier G. and Nappi A. (1983) Parameter estimation of a static geotechnical model using a Bayes’ approach. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 20: 215–226

    Article  Google Scholar 

  7. Engl H. W., Hanke M. and Neubauer A. (1996) Regularization of inverse prob- lems. Netherlands: Kluwer Academic Publishers

    Book  Google Scholar 

  8. Fadale T. D., Nenarokomov A. V., Emery A. F. (1995) Two approaches to optimal sensor locations. Journal of Heat Transfer, 117: 373–379

    Article  Google Scholar 

  9. Fulton W. (1995) Algebraic topology. Springer Verlag New York

    Book  MATH  Google Scholar 

  10. Gioda G. and Sakurai S. (1987) Back analysis procedures for the interpretation of field measurements in geomechanics. International Journal for Numerical and Analytical Methods in Geomechanics, 11: 555–583

    Article  Google Scholar 

  11. Gioda G. (1990) Some applications of mathematical programming in geomechanics. In: Numerical Methods and Constitutive Modelling in Geomechanics, Desai, C. S., Gioda, G. eds., Springer Verlag New York, 319–350

    Google Scholar 

  12. Haftka R. T., Scott E. P., Cruz J. R. (1998) Optimization and experiments: a survey. Applied Mechanics Reviews, 51: 435–448

    Article  Google Scholar 

  13. Kawamoto T., Ichikawa Y., Kyoya T. (1988) Deformation and fracturing behaviour of discontinuous rock mass and damage mechanics theory. International Journal for Numerical and Analytical Methods in Geomechanics, 12: 1–30

    Article  MATH  Google Scholar 

  14. Keeler S. E., Reilly P. M. (1992) The design of experiments when there are errors in all the variables. The Canadian Journal of Chemical Engineering, 70: 774–779

    Article  Google Scholar 

  15. Köppel J., Amstad C, Kovari K. (1983) The measurement of displacement vectors with the TRIVEC borehole probe. In: Field Measurements in Geomechanics, Zurich, K. Kovari ed., Rotterdam: Balkema: 209–239

    Google Scholar 

  16. Mitchell T. J. (1974) An algorithm for the construction of “D optimal” experimental designs. Technometrics, 16: 203–220

    MathSciNet  MATH  Google Scholar 

  17. Murakami A., Hasegawa T., Sakaguchi H. (1991) Interpretation of ground per- formances based on back analysis results. In: Computer Methods and Advances in Geomechanics, Beer G., Booker J. R. and Carter J. P. eds., Rotterdam: Balkema: 1011–1015

    Google Scholar 

  18. Nelder J. A., Mead R. (1964) A simplex method for function minimization. The Computer Journal, 7: 308–313

    Google Scholar 

  19. Nocedal J., Wright S. J. (1999) Numerical optimization, Springer Verlag New York

    Book  MATH  Google Scholar 

  20. Romanov V. G. (1987) Inverse Problems of Mathematical Physics, Utrecht, Vnuscience Press BV

    Google Scholar 

  21. Spendley W., Hext G. R., Himsworth F R. (1962) Sequential application of simplex designs in optimization and evolutionary operation. Technometrics, 4: 441–461

    Article  MathSciNet  MATH  Google Scholar 

  22. Swoboda G., Yang Q. (1999) An energy-based damage model of geomaterials I. Formulation and numerical results. International Journal of Solids and Structures, 36: 1719–1734

    Article  MATH  Google Scholar 

  23. [23] Swoboda G., Yang Q. (1999) An energy-based damage model of geomaterials II. Deduction of damage evolution laws. International Journal of Solids and Structures, 36: 1735–1755

    Article  MATH  Google Scholar 

  24. Swoboda G. (2001) The manual of FINAL 7.1. University of Innsbruck, Austria

    Google Scholar 

  25. [25] Taktak R., Beck J. V. and Scott E. P. (1993) Optimal experimental design for estimating thermal properties of composite materials. International Journal of Heat and Mass Transfer, 36: 2977–2986

    Article  Google Scholar 

  26. Terzaghi K. and Peck R. B. (1948) Soil mechanics in engineering practice. John Wiley and Sons New York

    Google Scholar 

  27. Venclik P. (1994) Development of an inverse back analysis code and its ver- ification. In: Numerical Methods in Geotechnical Engineering (Manchester).Smith I. M. ed., Rotterdam: Balkema: 423–430

    Google Scholar 

  28. [28] Welch W. J. (1982) Branch-and-bound search for experimental designs based on D optimality and other criteria. Technometrics, 24: 41–48

    MathSciNet  MATH  Google Scholar 

  29. Yang L. D. (1996) The theory and applications of back analysis in geotechnical problems. Beijing: Science Press, (in Chinese)

    Google Scholar 

  30. Yusuke H., Lie W. T., Soumitra G. (1994) Inverse analysis of an embankment on soft clay by extended Bayesian method. International Journal for Numerical and Analytical Methods in Geomechanics, 18: 709–734

    Article  MATH  Google Scholar 

  31. Zienkiewicz O. C. (1989) The finite element method. McGraw-Hill London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Xiang, Z., Swoboda, G., Cen, Z. (2003). Parameter identification and its application in tunneling. In: Beer, G. (eds) Numerical Simulation in Tunnelling. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6099-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6099-2_8

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7221-6

  • Online ISBN: 978-3-7091-6099-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics