Advertisement

Material model for soil and applications

  • Roman Lackner
  • Yvonne Spira
  • Christian Pichler
  • Herbert A. Mang
Chapter

Abstract

This chapter deals with the development of a realistic material model for the simulation of the mechanical behavior of granular soil. The material model is formulated in the framework of multi-surface viscoplasticity, involving a Mohr-Coulomb criterion for the simulation of compressive loading and a tension-cut-off for capturing the response of soil under tensile loading. Whereas the tension-cut-off is assumed to be ideally-plastic, friction harding is considered in the Mohr-Coulomb criterion. The commonly observed change in the dilational behavior of granular soil during plastic deformations is accounted for by a non-associative flow rule. After presentation of the algorithmic formulation of the proposed material model, its applicability for investigations of real-life structures is demonstrated by means of numerical analyses of two Austrian tunnels, focusing on (i) the effect of ground improvement by means of jet grouting and (ii) the safety of tunnels under fire load.

Keywords

Surface Settlement Granular Soil Support Ring Concrete Lining Ground Improvement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Beiche H., Erichsen C., Kargerer W., Schilcher E., Wooge M. (1992) Praktische Lösungen bei der vorauseilenden Schirminjektion unter Einsatz von Hochdruckinjektionen (HDI) [Practical solutions for the antecedent canopy injection using jet grouting]. Taschenbuch für den Tunnelbau, 16, Glückauf GmbH, Essen, in GermanGoogle Scholar
  2. [2]
    Borja R.I., Regueiro R.A., Lai T.Y. (2000) FE modeling of strain localization in soft rock. Journal of Geotechnical and Geoenvironmental Engineering, 126(4):l-9CrossRefGoogle Scholar
  3. [3]
    Ch. Brandstätter, R. Lackner, and H.A. Mang (2002) Bestimmung von Materialeigenschaften zementgebundener Werkstoffe mittels Temperaturmessungen: Anwendung im Rahmen des Düsenstrahlverfahrens [Evaluation of properties of cementitious materials by means of temperature measurements: Application to jet grouting]. Bauingenieur, 77(2):51-57, in GermanGoogle Scholar
  4. [4]
    G. Duvaut and J.L. Lions (1972) Les inequations en mechanique et en physique [The inequations in mechanics and physics]. Dunod, Paris, in FrenchGoogle Scholar
  5. [5]
    European Institute for Standardization (1992) Design of Concrete StructuresGoogle Scholar
  6. [6]
    E. Falk (1997) Underground works in urban environment. In Proceedings of the 14th International Conference on Soil Mechanics and Foundation Engineering, 3:1401-1406, Hamburg, Germany. Balkema, RotterdamGoogle Scholar
  7. [7]
    E. Falk (2001) Compensation grouting - Stand der Anwendung im Tunnelbau[Compensation grouting - State of the art in tunneling]. In H. Brandl, editor,Proceedings of the 3rd Austrian Symposium on Geotechniques, pages 167-180,Vienna, Austria, in GermanGoogle Scholar
  8. [8]
    D. Fitl (1997) Der Tunnel Frankfurter Kreuz [The Frankfurter Kreuz tunnel].Felsbau, 15(5):347-350, in GermanGoogle Scholar
  9. [9]
    G. Gioda and L. Locatelli (1999) Back analysis of the measurements performed during the excavation of a shallow tunnel in sand. International Journal for Numerical and Analytical Methods in Geomechanics, 23:1407-1425CrossRefGoogle Scholar
  10. [10]
    G. Guatteri, P. Mosiici, A. Koshima, and V. Doro-Altan (1994) Application of jet grouting to tunnel portals and top headings in NATM tunneling: Brazil- ian experience. In A.L. Bell, editor, Grouting in the ground, pages 455-471, London, England. Thomas Telford, LondonGoogle Scholar
  11. [11]
    Ch. Hellmich, H.A. Mang, and F.-J. Ulm (1999) Hybrid method for quantification of stress states in shotcrete tunnel shells: combination of 3D in-situ displacement measurements and thermochemoplastic material law. In W. Wunderlich, editor, CD-ROM Proceedings of the 1st European Conference on Com- putational Mechanics, Munich, Germany, 1999. Also published in Computers and Structures, 79:2103-2115, 2001Google Scholar
  12. [12]
    R. Lackner, Ch. Hellmich, and H.A. Mang (2002) Constitutive modeling of cementitious materials in the framework of chemoplasticity. International Jour- nal for Numerical Methods in Engineering, 53(10):2357-2388MATHCrossRefGoogle Scholar
  13. [13]
    R. Lackner, J. Macht, Ch. Hellmich, and H.A. Mang (2002) Hybrid analyses of segmented shotcrete tunnel linings in squeezing rock. Journal of Geotechnical and Geoenvironmental Engineering (ASCE), 128(4):298-308CrossRefGoogle Scholar
  14. [14]
    R. Lackner and H.A. Mang (2003) Cracking in shotcrete tunnel shells. Engineering Fracture Mechanics, 70(7-8): 1047-1068CrossRefGoogle Scholar
  15. [15]
    R. Lackner and H.A. Mang (2002) Modeling of early-age fracture of shotcrete: application to tunneling. In B.L. Karihaloo, editor, Proceedings of the IUTAM Symposium on Analytical and Computational Fracture Mechanics of Non-homogeneous Materials, pages 197-210, Cardiff, Wales. Kluwer Academic Publishers, DordrechtGoogle Scholar
  16. [16]
    H. Liebsch and C. Haberland (1998) Soft ground tunneling in urban areas by NATM. Felsbau, 16(2):78-90Google Scholar
  17. [17]
    W.-M. Lin, T.D. Lin, and L.J. Powers-Couche (1996) Microstructure of firedamaged concrete. ACI Materials Journal, 93(3):199-205Google Scholar
  18. [18]
    J. Macht, R. Lackner, Ch. Hellmich, and H.A. Mang (2001) Shotcrete creep properties - review of material tests and structural analyses of tunnels. In F.-J Ulm, Z.P. Bažant, and F.H. Wittmann, editors, Proceedings of the 6th International Conference on Creep, Shrinkage and Durability Mechanics of Concrete and other Quasi-Brittle Materials, pages 285-300, Cambridge, USA. Elsevier Science Ltd., AmsterdamGoogle Scholar
  19. [19]
    T. Marcher and P.A. Vermeer (2001) Macromodelling of softening in noncohesive soils. In P.A. Vermeer, S. Diebels, W. Ehlers, H.J. Herrmann, S. Luding, and E. Ramm, editors, Continuous and discontinuous modeling of cohesive-frictional materials, Lecture notes in Physics, 568:89-108. Springer, BerlinCrossRefGoogle Scholar
  20. [20]
    L.T. Phan and N.J. Carino (1998) Review of mechanical properties of HSC at elevated temperatures. Journal of Materials in Civil Engineering, ASCE, 10(l):58-64CrossRefGoogle Scholar
  21. [21]
    R.A. Regueiro and R.I. Borja (1999) A finite element model of localized defor- mation in frictional materials taking a strong discontinuity approach. Finite Elements in Analysis and Design, 33:283-315MATHCrossRefGoogle Scholar
  22. [22]
    J.C. Simo and T.J.R. Hughes (1998) Computational Inelasticity. Springer, BerlinMATHGoogle Scholar
  23. [23]
    D. Sterpi (1999) An analysis of geotechnical problems involving strain softening effects. International Journal for Numerical and Analytical Methods in Geomechanics, 23:1427-1454, 1999MATHCrossRefGoogle Scholar
  24. [24]
    K. Terzaghi, R.B. Peck, and G. Mesri (1996) Soil mechanics in engineering practice. John Wiley and Sons, New YorkGoogle Scholar
  25. [25]
    F.-J. Ulm, P. Acker, and M. Levy (1999) The “Chunnel” fire. II: Analysis of concrete damage. Journal of Engineering Mechanics (ASCE), 125(3):283-289CrossRefGoogle Scholar
  26. [26]
    F.-J. Ulm and O. Coussy (1995) Modeling of thermochemomechanical couplings of concrete at early ages. Journal of Engineering Mechanics (ASCE), 121(7):785-794CrossRefGoogle Scholar
  27. [27]
    F.-J. Ulm, O. Coussy, and Z.P. Bažant (1999) The “Chunnel” fire. I: Chemoplastic softening in rapidly heated concrete. Journal of Engineering Mechanics, ASCE, 125(3):272-282CrossRefGoogle Scholar
  28. [28]
    I. Vardoulakis, M. Goldscheider, and G. Gudehus (1978) Formation of shear bands in sand bodies as a bifurcation problem. International Journal for Nu- merical and Analytical Methods in Geomechanics, 2:99-128CrossRefGoogle Scholar
  29. [29]
    P.A. Vermeer and R. de Borst (1984) Non-associated plasticity for soils, concrete and rock. HERON, 29(3):3-64Google Scholar
  30. [30]
    W. Wittke, B. Pierau, and C. Erichsen (2000) Der Einsatz von Hochdruckinjektionen zur Baugrundverbesserung und für den Tunnelbau im Lockergestein [Application of jet grouting in ground improvement and tunneling in gran- ular material]. In G. Riedmüller, W. Schubert, and S. Semprich, editors, Düsenstrahlverfahren: Möglichkeiten und Grenzen der Anwendung, Christian Veder Kolloquium, pages 155-183, Graz, Austria. Gruppe Geotechnik Graz, Graz, in GermanGoogle Scholar
  31. [31]
    D.M. Wood (1990) Soil Behavior and Critical State Soil Mechanics. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Roman Lackner
    • 1
  • Yvonne Spira
    • 1
  • Christian Pichler
    • 1
  • Herbert A. Mang
    • 1
  1. 1.Institute for Strength of MaterialsVienna University of TechnologyAustria

Personalised recommendations