Improved site investigation Acquisition of geotechnical rock mass parameters based on 3D computer vision

  • Andreas Gaich
  • Alfred Fasching
  • Wulf Schubert


Acquisition and evaluation of geotechnical data are integrated parts of subsurface and surface construction works. Geotechnical data serve as input for decision making processes during all phases of projects, ranging from feasibility studies to construction and maintenance. The present system of data acquisition, specifically applied during underground construction works, has a number of constraints. Sampling bias may be caused by the “human factor” of individual capabilities, inaccessibility of the rock exposure and time limitations. In most cases data are irrecoverable when excavation proceeds or support has to be applied. Data processing and evaluation is time consuming so that input data for numerical calculations cannot be provided on a daily basis. To overcome the listed shortcomings a digital stereoscopic colour imaging system has been developed which enables the evaluation of a large number of geotechnical data by interactive two and three dimensional image analysis. Among others the data can be used for the innovative modelling of the rock mass structure, for the provision of geometrical input data for numerical simulations performed on site as well as for a descriptive visualisation of complex structural conditions. The developed hardware and software components have been tested in different environments and on different rock mass types to investigate their general suitability and effectiveness. It was found that digital stereoscopic imaging and image evaluation are suitable for a cpmprehensive and reproducible documentation of the structural inventory of rock surfaces, and are most effective for acquisition of geotechnical data.


Rock Mass Tunnel Face Panoramic Image Jointed Rock Mass Computer Vision System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Barton N., Lien R., Lunde, J. (1983) Engineering classification of rock mass for the design of tunnel support. NGI Publication 106, Rock Mech, 6, No. 4: 189–236CrossRefGoogle Scholar
  2. [2]
    Benosman R., Kang S. B. (eds.) (2001) Panoramic Vision: Sensors, Theory and Applications. Springer Verlag, HeidelbergMATHGoogle Scholar
  3. [3]
    Bienniawski Z. T. (1974) Engineering classification of jointed rock masses. Trans. S. Afr. Inst. Civ. Engrs., 15: 335–344Google Scholar
  4. [4]
    Brown E. T. (ed.) (1981) Rock characterisation, testing and monitoring. ISRM Suggested Methods. Pergamon PressGoogle Scholar
  5. [5]
    Case J. B. (1967) The analytical reduction of panoramic and strip photography, Photogrammetria: 127–141Google Scholar
  6. [6]
    Cravero M. and Iabichino G. (1993) Characterization of joint patterns from trace maps. In: Eurock ’93, Ribeiro e Sousa and Grossmann (eds.), BalkemaGoogle Scholar
  7. [7]
    Crosta G. (1997) Evaluating Rock Mass Geometry Prom Photogrammetric Images. Rock Mechanics and Rock Engineering, 30(1): 35–38CrossRefGoogle Scholar
  8. [8]
    Daller J., Riedmüller G., Schubert W. (1994) Zur Problematik der Gebirgsklas-sifizierung im Tunnelbau. Felsbau - Rock Soil Engng. 6/94: 443–447Google Scholar
  9. [9]
    Delaunay B. (1934) Sur la sphére vide. Izvestia Akademia Nauk SSSR, VII Seria, Otdelenie Matematicheskii i Estestvennyka Nauk, 7: 793–800Google Scholar
  10. [10]
    Dershowitz W., Lee, G. Geier, J. Foxford T., LaPointe P., Thomas A. (1996) Fracman - Interactive discrete feature data analysis, geometric modelling, and exploration simulation. User Documentation, Version 2.5, Golder Associates Inc.Google Scholar
  11. [11]
    Fasching A. (2001) Improvement of Acquisition Methods for Geotechnical Data, Phd thesis, Riedmüller, G., Schubert, W. and Semprich, S. (eds.) Gruppe Geotechnik Graz, Schriftenreihe, Heft 12b, Technische Universitat, GrazGoogle Scholar
  12. [12]
    Foley J.D., van Dam A., Feiner S.K., Hughes J.F. (1991) Computer graphics, principles and practice, 2nd ed. Reading. MA: Addison-WesleyGoogle Scholar
  13. [13]
    Franklin J.A., Maerz N.H. and Bennet C.P. (1988) Rock mass charactersation using photoanalysis. Int. Journal of Mining and Geological Engineering 6: 97– 112CrossRefGoogle Scholar
  14. [14]
    Gaich, A., Sehovic A., Gruber M. (1998) System zur Erzeugung hochauflosender Stereobilder für die Nahbereichs-Objektrekonstruktion, Vermessung und Geoinformation, No. 4/98: 194–201Google Scholar
  15. [15]
    Gaich A. (2001) Panoramic Vision for Geotechnical Analyses in Tunnelling, Phd thesis, Riedmüller, G., Schubert, W. and Semprich, S. (eds.) Gruppe Geotechnik Graz, Schriftenreihe, Heft 12a, Technische Universität, GrazGoogle Scholar
  16. [16]
    Goodman R.E. (1989) Introduction to rock mechanics. 2nd Edition. John WileyGoogle Scholar
  17. [17]
    Grimstad E., Barton N. (1993) Updating of the Q-System for NMT. Proc. Int. Symp. on Sprayed Shotcrete, FagernesGoogle Scholar
  18. [18]
    Hagan T.O. (1980) A Case for Terrestrial Photogrammetry in Deep-Mine Rock Structure Studies. Int. Journal of Rock Mechanics and Mining Sciences 17: 191–198CrossRefGoogle Scholar
  19. [19] ITASCA Consulting Group. UDEC 3.00 user’s manual, Minnesota, USAGoogle Scholar
  20. [20]
    Linkwitz K. (1963) Terrestrisch-photogrammetrische Kluftmessung. Rock Mechanics and Engineering Geology I:152–159Google Scholar
  21. [21] Maresch M. (1998) Linear CCD array based recording of buildings for digital models. Dissertation, OCG Schriftenreihe Vol. 109. Wien: Österreichische Computer GesellschaftGoogle Scholar
  22. [22]
    Mauldon M. (1998) Estimating mean fracture trace length and density from observations in convex windows. Rock Mech. Rock Engng. Vol. 31: 201–216CrossRefGoogle Scholar
  23. [23]
    Priest S. D. (1993) Discontinuity Analysis for Rock Engineering, London:Chapman and HallCrossRefGoogle Scholar
  24. [24]
    Price N. J., Cosgrove J. W. (1990) Analysis of geological structures. Cambridge:University PressGoogle Scholar
  25. [25]
    Raab T. (1994) . Über Tendenzen der Fehleinschätzungen einiger ingenieurgeologischer Parameter. Diploma thesis. Graz: University of TechnologyGoogle Scholar
  26. [26]
    Raghavan V., Masumoto S., Koike K. and Nagano S. (1995) Automatic lineament extraction from digital images using a segment tracing and rotation transformation approach. Computers and Geosciences, Vol. 21, No. 4, 555–591CrossRefGoogle Scholar
  27. [27]
    Reid T.R., Harrison J.P. (2000) A semi automated methodology for discontinuity trace detection in digital images of rock mass exposures. Int. Journal of Rock Mechanics and Mining Sciences 37: 1073–1089CrossRefGoogle Scholar
  28. [28]
    Rengers N. (1967) Terrestrial Photogrammetry: A Valuable Tool for Engineering Geological Purposes. Rock Mechanics and Engineering Geology V: 150–154Google Scholar
  29. [29]
    Riedmüller G., Schubert, W. (1999) Critical comments on quantitative rock mass classifications. Felsbau - Rock Soil Engng. 3/99: 164–167Google Scholar
  30. [30]
    Schubert P. (1992) Die Ungewißheit bei der Standsicherheitsanalyse von Felsbauwerken.Felsbau Jhg. 10, Nr. 4: 191–195MathSciNetGoogle Scholar
  31. [31]
    Schubert W., Steindorfer A. (1997) Application of new Methods of Monitoring Data Analysis for short term Prediction in Tunnelling, Proc. of the World Tunnel Congress 97 - Tunnels for People, Rotterdam: Balkema: 65–70Google Scholar
  32. [32]
    Sellner P. (2000) Prediction of displacements in tunnelling. Phd thesis.Riedmüller, G., Schubert, W. and Semprich, S. (eds.) Gruppe Geotechnik Graz, Schriftenreihe, Heft 9. Technische Universität, GrazGoogle Scholar
  33. [33]
    Slama Ch. C. (ed.) (1980) Manual of Photogrammetry, Fourth Edition, Falls Church, VA: American Society of PhotogrammetryGoogle Scholar
  34. [34]
    Sonka M., Hlavac V., Boyle, R. (1998) Image Processing, Analysis, and Machine Vision, 2nd ed., Pacific Grove, CA: Brooks/Cole PublishingGoogle Scholar
  35. [35]
    Steindorfer A. (1998) Short Term Prediction of Rock Mass Behaviour in Tunnelling by Advanced Analysis of Displacement Monitoring Data. Phd thesis,Riedmüller, G., Schubert, W. and Semprich, S. (eds.) Gruppe Geotechnik Graz, Schriftenreihe, Heft 1, Technische Universität, GrazGoogle Scholar
  36. [36]
    Tsoutrelis C.E., Exadactylos G.E., Kapenis A.P. (1990) Study of the rock mass discontinuity system using photoanalysis. In Rossmanith (ed.), Proc. int. conf.on Mechanics of Jointed and Faulted Rock. Rotterdam: BalkemaGoogle Scholar
  37. [37]
    Vieten W. (1970) Die Ermittlung tektonischer Gefügedaten aus stereophotogrammetrischen Bruchwandaufnahmen. Clausthaler Tektonische Hefte. Heft10, 319–336Google Scholar
  38. [38]
    Wittke W. (1984) Felsmechanik - Grundlagen für wirtschaftliches Bauen im Fels. Springer VerlagGoogle Scholar
  39. [39] Condor Eartch Technologies Inc., Scholar
  40. [40] DIBIT tunnel scanner, Scholar
  41. [41] Golder Associates Inc. 2000. Scholar
  42. [42] MAPTEK Inc.: Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Andreas Gaich
    • 1
  • Alfred Fasching
    • 2
  • Wulf Schubert
    • 3
  1. 1.3G Software & Measurement GmbHAustria
  2. 2.3G Gruppe Geotechnik GrazAustria
  3. 3.Institute for Rock Mechanics and TunnellingGraz University of TechnologyAustria

Personalised recommendations