Advertisement

Advanced post-processing methods

  • Gernot Opriessnig
  • Gernot Beer
Chapter

Abstract

This chapter describes a visualisation system, which is specially designed for tunnelling. New visualisation-techniques for the improved perception of results of numerical simulations and measurements are presented. A requirement is that the characteristic properties of the data must not be changed by the display-methods used. In this chapter the implementation of a real-time system as well as the theoretical bases for visualisation is beeing described. Parameter studies are also presented to ascertain the display quality. The aim is to develop a system which is intuitive to use and that can display the results of a finite- or a boundary element calculation as well as data from measurements. To be applicable on a tunnel site, the system has to display the data in a way, that makes it easy to compare it to the measured data, which are available. The Tunnelling Visualisation System (TVS), which has been developed in the visualisation-project of the Austrian Joint Research Initiative “Numerical Simulation in Tunnelling” enables the user to perform a virtual walk through a tunnel. Navigation can be done using the mouse or a spaceball, which is a three-dimensional input device. With the help of this easy navigation is possible. Special hardware makes it possible to see a three-dimensional picture.

Keywords

Visualisation System Head Mount Display Brick Element Proceeding IEEE Joint Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Neider J., Davis T., Woo M. (1995) OpenGL Programming Guide - The Official Guide to Learning OpenGL, Release 1. Addison-Wesley Publishing Company, ISBN 0-201-63274-8Google Scholar
  2. 2.
    Noble R.A., Clapworthy G. J. (1998) Improving Interactivity within a Virtual Sculpting Enviroment. Proceedings IEEE Conference on Information Visualization Google Scholar
  3. 3.
    Opriessnig G., Beer G. (1998) Visualisation in Tunnelling. Proceedings IEEE International Conference on Information Visualisation. IEEE Computer Society, Southbank University London, UKGoogle Scholar
  4. 4.
    Jobard B., Lefer W. (1997) The Motion Map: Efficient Computation of Steady Flow Animations. Laboratoire d’Informatique du Littoral, Calais PranceGoogle Scholar
  5. 5.
    Yuanxian Gu, Xiaosong Yang, Cangzhou Yuan, Yungpeng Li (1998) Advanced Visualization Techniques for FEM-Computing-Scan-Buffer based direct Volume Rendereing for 3D irregular meshes. CIMNE, Barcelona SpainGoogle Scholar
  6. 6.
    Freyer U. (1981) Nachrichtenübertragungstechnik, Grundlagen - Komponenten, Verfahren - Systeme. Carl Hanser Verlag München Wien, ISBN 3-446-13093-4Google Scholar
  7. 7.
    Herter E., Lörcher W. (1987) Nachrichtentechnik-Übertragung-Vermittlung-Verarbeitung.Hanser ISBN 3-446-14593-1Google Scholar
  8. 8.
    Opriessnig G., Beer G. (2000) Data Optimisation for the Visualisation of FEM-Results. Proceedings IEEE International Conference on Information Visualisation. IEEE Computer Society, Southbank University London, UKGoogle Scholar
  9. 9.
    Beer G., Watson J. (1992) Introduction to Finite and Boundary Element Methods for Engineers. John Wiley and SonsMATHGoogle Scholar
  10. 10.
    Opriessnig G., Beer G. (1999) Visualisation in Tunnelling - New Developments. Proceedings IEEE International Conference on Information Visualisation. IEEE Computer Society, Southbank University London, UKGoogle Scholar
  11. 11.
    Opriessnig G., Kettler M., Beer G. (2001) Elimination of the Influence of the Mesh Geometry to the Quality of Global Smoothing. Proceedings IEEE International Conference on Information Visualisation. IEEE Computer Society, Southbank University London, UKGoogle Scholar
  12. 12.
    Feigl W. (2001) Entwicklung und Implementierung von Algorithmen zur Visualisierung von FEM-Daten und Messresultaten in einem Modell (in German). Masters Thesis, Institute for Structural Analysis, Graz University of TechnologyGoogle Scholar
  13. 13.
    Opriessnig G., Beer G. (2002) Improving the Modified Global Smoothing Method for spatial distributed and large Data-Sets to use it in the Real-Time Visualisation of Simulation and Measurement Information. Proceedings IEEE International Conference on Information Visualisation. IEEE Computer Society, Southbank University London, UKGoogle Scholar
  14. 14.
    Duarte C. A., Oden J. T. (1992) H-p Clouds-an h-p Meshless Method. TICAM - Texas Institute for Computational and Applied Mathematics, The University of Texas at Austin Taylor Hall 2.400 Austin, Texas, 787712, USAGoogle Scholar
  15. 15.
    Belytschko Organ Krongauz (1993) A Coupled Finite Element Free Galerkin Method. Department of Civil Engineering Northwestern University Evanston IL 60208-3109 USAGoogle Scholar
  16. 16.
    Haas W. et.al. (1997) Visualisierung und Animation in der Geomechanik für Strömungs-, Transport- und Spannungsberechnungen. Institut für Informations-systeme Joanneum Research GrazGoogle Scholar
  17. 17.
    Lenze B. (1997) Einführung in die Fourier Analyse. Logos BerlinGoogle Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Gernot Opriessnig
    • 1
  • Gernot Beer
    • 1
  1. 1.Institute for Structural AnalysisGraz University of TechnologyAustria

Personalised recommendations