A multilaminate model for finite element analysis of tunnel excavation

  • Helmut F. Schweiger
  • Hartmut Schuller


A constitutive model formulated within the framework of the multilaminate concept for soils is presented. It is shown that anisotropic material behaviour is easily accounted for with these types of models. The potential of the formulation to predict plastic volumetric strains purely caused by rotation of principal stress axes is demonstrated. Furthermore the model is able to capture the formation of shear bands due to an enhanced strain softening formulation including both frictional and cohesive softening behaviour. Due to a simple regularisation technique mesh independent results are obtained with sufficient accuracy for practical purposes. The latter feature will be highlighted by solving the practical problem of a shallow tunnel excavation constructed using the principles of the NATM. It is shown that the development of plastic shear strains leading to a failure mechanism that involves shear banding is realistically predicted by the proposed formulation.


Shear Band Friction Angle Contact Plane Tunnel Excavation Critical Plane 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Belytschko T., Fish J. and Englemann B.E. (1988) A finite element with embedded localization zones. Comp. Meth. Appl. Mech. Eng., Vol. 70: 59-89MATHCrossRefGoogle Scholar
  2. [2]
    Leroy Y., Ortiz M. (1989) Finite element analysis of strain localization in frictional materials. Int. J. Num. Analyt. Meth. Geomech., Vol. 13: 53-74CrossRefGoogle Scholar
  3. [3]
    Pietruszczak S., Mróz Z. (1981) Finite element analysis of deformation of strain-softening materials. Int. J. Num. Meth. Eng., Vol. 17: 327-334MATHCrossRefGoogle Scholar
  4. [4]
    Brinkgreve R.B.J., Vermeer P.A. (1995) A new approach to softening plasticity. In: Pande and Pietruszczak (eds.) Proc. 5th Int. Symp. Numerical Models in Geomechanics - NUMOG V, Davos: 193-202Google Scholar
  5. [5]
    Marcher T., Vermeer P.A. (2000) Macromodelling of softening in non-cohesive soils. Proc. Int. Symp. Continuous and Discontinuous Modelling of Cohesive Frictional Materials - CDM 2000: 89-108, SpringerGoogle Scholar
  6. [6]
    Vardoulakis L, Aifantis E.C. (1989) Gradient dependent dilatancy and its implications in shear banding and liquefaction. Ingenieur Archiv, 59: 197-208CrossRefGoogle Scholar
  7. [7]
    Mühlhaus H.-B., Vardoulakis I. (1987) The thickness of shear bands in granular materials. Géotechnique, Vol. 37, No. 3: 271-283MATHCrossRefGoogle Scholar
  8. [8]
    de Borst R. (1991) Simulation of strain localization: A re-appraisal of the Cosserat continuum. Eng. Comp., Vol. 8: 317-332CrossRefGoogle Scholar
  9. [9]
    Tejchman J., Bauer E. (1996) Numerical simulation of shear band formation with a polar hypoplastic constitutive model. Computers and Geotechnics, Vol.19, No. 3: 221-224CrossRefGoogle Scholar
  10. [10]
    Oka F., Yashima A., Kohara L, Adachi T. (1994) Instability of a viscoplastic model for clay and numerical study of strain localisation. Chambon, Desrues and Vardoulakis (eds) 3rd Int. Workshop Localisation and Bifurcation Theory for Soils and Rocks, Grenoble: 237-247Google Scholar
  11. [11]
    Zienkiewicz O.C., Zhu J.Z. (1987) A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Num. Meth. Eng., Vol. 24: 337-357MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    Hicks M.A. (1997) An adaptive mesh study of localisation in a saturated soil.Yuan (ed.) Proc. 9 th Int. Conf. Computer Methods and Advances in Geomechanics, Wuhan: 1853-1858Google Scholar
  13. [13]
    Cividini A., Gioda G. (1992) A finite element analysis of direct shear tests on stiff clay. Int. J. Num. Anal. Meth. Geomech., 16: 869-886CrossRefGoogle Scholar
  14. [14]
    Sterpi D., Sakurai S. (1997) Numerical analysis of laboratory tests on a model tunnel. Asaoka, Adachi and Oka (eds.) Proc. Deformation and Progressive Failure in Geomechanics, IS-Nagoya ’97: 211-216Google Scholar
  15. [15]
    Sterpi D. (1999) An analysis of geotechnical problems involving strain softening effects. Int. J. Num. Analyt. Meth. Geomech., Vol. 23: 1427-1454MATHCrossRefGoogle Scholar
  16. [16]
    Sterpi D., Cividini A. (1997) Numerical analysis of tunnels in strain softening soil. Yuan (ed.) Proc. 9th Int. Conf. Computer Methods and Advances in Geomechanic, Wuhan: 1389-1394Google Scholar
  17. [17]
    Bazant Z.P., Oh B.H. (1985) Microplane model for progressive fracture of concrete and rock. Journal of Engineering Mechanics, Vol. 111, No. 4: 559-582CrossRefGoogle Scholar
  18. [18]
    Beer G. (2001) BEFE user’s and reference manual. CSS, Graz, Austria.Google Scholar
  19. [19]
    Zienkiewicz O.C., Pande G.N. (1977) Time dependent multi-laminate model of rocks - a numerical study of deformation and failure of rock masses. Int. J. Num. Anal. Meth. Geomech., 1: 219-247CrossRefGoogle Scholar
  20. [20]
    Pande G.N., Sharma K.G. (1983) Multi-laminate model of clays - a numerical evaluation of the influence of rotation of the principal stress axes. Int. J. Num. Anal. Meth. Geomech., 7: 397-418MATHCrossRefGoogle Scholar
  21. [21]
    Krajewski W. (1986) Mathematisch-numerische und experimentelle Untersuchungen zur Bestimmung der Tragfähigkeit von in Sand gegründeten, vertikal belasteten Pfählen. Veröffentlichungen des Instituts für Grundbau, Bodenmechanik,Felsmechanik und Verkehrswasserbau der RWTH Aachen, Heft 13.Google Scholar
  22. [22]
    Sadrnejad S.A., Pande G.N. (1989) A multilaminate model for sands. S.Pietruszczak and G.N. Pande (ed.) Proc. 3 rd Int. Symp. on Numerical Models in Geomechanics: 17-27, ElsevierGoogle Scholar
  23. [23]
    Pietruszczak S., Pande G.N. (1987) Multilaminate framework of soil models-plasticity formulation. Num. Analyt. Meth. Geomech., 11: 651-658MATHCrossRefGoogle Scholar
  24. [24]
    Karstunen M. (1999) Numerical modelling of strain localization in dense sands.Acta Polytechnica Scandinavica No. 113, Espoo: The Finnish Academy of TechnologyGoogle Scholar
  25. [25]
    Bazant Z.P., Prat P.C. (1988) Microplane model for brittle-plastic material: I.theory. Journal of Engineering Mechanics, Vol.114, No.10: 1672-1688CrossRefGoogle Scholar
  26. [26]
    Pande G.N., Yamada M. (1994) The multilaminate framework of models for rock and soil masses. Proc. 1st Int. Workshop on Applications of Computational Mechanics in Geotechnical Engineering, Rio de Janeiro: 105-123, BalkemaGoogle Scholar
  27. [27]
    Vermeer P.A. (1978) A double hardening model for sands. Géotechnique, 28: 413-433CrossRefGoogle Scholar
  28. [28]
    de Borst R. (1986) Non-linear analysis of frictional materials. Delft University of Technology, Netherlands. DissertationGoogle Scholar
  29. [29]
    Rowe P.W. (1972) Theoretical meaning and observed values of deformation parameters for soil. R.H.G. Parry (ed.) Stress strain behaviour of soils, Proc. Roscoe Mem. symp.: 143-194. Henley-on-Thames: FoulisGoogle Scholar
  30. [30]
    Spener U. (2000) Parameterstudien zur Anwendung des Multilaminate Models. Institute for Soil Mechanics and Foundation Engineering, Graz University of Technology. Diploma thesisGoogle Scholar
  31. [31]
    Arthur R.F., Chua K.S., Dunstan T., Rodriguez del C. J.I. (1980) Principal stress rotation: a missing parameter. J. Geotech. Engineering Div. Proc. ASCE, 106, No.GT 4: 419-433Google Scholar
  32. [32]
    Ishihara K., Towhata I. (1983) Sand response to cyclic rotation of principal stress directions as induced by wave loads. Soils and Foundations, 23, No.4: 11-26CrossRefGoogle Scholar
  33. [33]
    Joer H.A., Lanier J., Fahey M. (1998) Deformation of granular materials due to rotation of principal axes. Géotechnique, 48: 605-619CrossRefGoogle Scholar
  34. [34]
    Schweiger H.F., Schuller H. (2000) New developments and practical applications of the Multilaminate Model for soils. Smith and Carter (eds.) Proc. Developments in Theoretical Geomechanics, The John Booker Memorial Symposium Sydney: 329-350. BalkemaGoogle Scholar
  35. [35]
    Wiltafsky C, Messerklinger S., Schweiger H.F. (2002) An advanced multilaminate model for clay. In: Pande and Pietruszczak (eds.) Proc. 8th Intern. Symp. Numerical Models in Geomechanics, Rom, Balkema: 67-73CrossRefGoogle Scholar
  36. [36]
    Akagi H., Saitoh J. (1994) Dilatancy characteristics of clayey soil under principal axes rotation. Shibuya, Mitachi and Miura (Eds.), Proc. Int. Symp. Pre-failure Deformation Characteristics of Geomaterials, Vol. 1: 311-314, Sapporo, BalkemaGoogle Scholar
  37. [37]
    Neher H.P., Cudny M., Wiltafsky C, Schweiger H.F (2002) Modelling principal stress rotation effects with multilaminate type constitutive models for clay. Pande and Pietruszczak (eds.) Proc. 8th Intern. Symp. Numerical Models in Geomechanics, Rom: 41-47, BalkemaGoogle Scholar
  38. [38]
    Desrues J., Hammad W. (1989) Shear banding dependency on mean stress level in sand. Dembicki, Gudehus and Sikora (ed.) Proc. 2nd Int. Workshop on Numerical Methods for Localization and Bifurcation of Granular Bodies, Gdansk - Karlsruhe: 57-67Google Scholar
  39. [39]
    Vavrovsky G.-M. (1994) Gebirgsdruckentwicklung, Hohlraumverformung und Ausbaudimensionierung. Felsbau, 12, No. 5: 312-329Google Scholar
  40. [40]
    Vavrovsky G.-M., Schubert P. (1995) Advanced analysis of monitored displacements opens a new field to continuously understand and control the geotechnical behaviour of tunnels. Proc. 8 th Congr. Rock Mechanics, Tokyo: 1415-1419Google Scholar
  41. [41]
    Schuller H., Schweiger H.F. (2002) Application of a Multilaminate Model to simulation of shear band formation in NATM tunnelling. Computers and Geotechnics. Accepted for publication.Google Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Helmut F. Schweiger
    • 1
  • Hartmut Schuller
    • 2
  1. 1.Institute for Soil Mechanics and Foundation Engineering, Computational Geotechnics GroupGraz University of TechnologyAustria
  2. 2.Garber and DalmatinerConsulting EngineersAustria

Personalised recommendations