Skip to main content

A multilaminate model for finite element analysis of tunnel excavation

  • Chapter
Numerical Simulation in Tunnelling

Abstract

A constitutive model formulated within the framework of the multilaminate concept for soils is presented. It is shown that anisotropic material behaviour is easily accounted for with these types of models. The potential of the formulation to predict plastic volumetric strains purely caused by rotation of principal stress axes is demonstrated. Furthermore the model is able to capture the formation of shear bands due to an enhanced strain softening formulation including both frictional and cohesive softening behaviour. Due to a simple regularisation technique mesh independent results are obtained with sufficient accuracy for practical purposes. The latter feature will be highlighted by solving the practical problem of a shallow tunnel excavation constructed using the principles of the NATM. It is shown that the development of plastic shear strains leading to a failure mechanism that involves shear banding is realistically predicted by the proposed formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belytschko T., Fish J. and Englemann B.E. (1988) A finite element with embedded localization zones. Comp. Meth. Appl. Mech. Eng., Vol. 70: 59-89

    Article  MATH  Google Scholar 

  2. Leroy Y., Ortiz M. (1989) Finite element analysis of strain localization in frictional materials. Int. J. Num. Analyt. Meth. Geomech., Vol. 13: 53-74

    Article  Google Scholar 

  3. Pietruszczak S., Mróz Z. (1981) Finite element analysis of deformation of strain-softening materials. Int. J. Num. Meth. Eng., Vol. 17: 327-334

    Article  MATH  Google Scholar 

  4. Brinkgreve R.B.J., Vermeer P.A. (1995) A new approach to softening plasticity. In: Pande and Pietruszczak (eds.) Proc. 5th Int. Symp. Numerical Models in Geomechanics - NUMOG V, Davos: 193-202

    Google Scholar 

  5. Marcher T., Vermeer P.A. (2000) Macromodelling of softening in non-cohesive soils. Proc. Int. Symp. Continuous and Discontinuous Modelling of Cohesive Frictional Materials - CDM 2000: 89-108, Springer

    Google Scholar 

  6. Vardoulakis L, Aifantis E.C. (1989) Gradient dependent dilatancy and its implications in shear banding and liquefaction. Ingenieur Archiv, 59: 197-208

    Article  Google Scholar 

  7. Mühlhaus H.-B., Vardoulakis I. (1987) The thickness of shear bands in granular materials. Géotechnique, Vol. 37, No. 3: 271-283

    Article  MATH  Google Scholar 

  8. de Borst R. (1991) Simulation of strain localization: A re-appraisal of the Cosserat continuum. Eng. Comp., Vol. 8: 317-332

    Article  Google Scholar 

  9. Tejchman J., Bauer E. (1996) Numerical simulation of shear band formation with a polar hypoplastic constitutive model. Computers and Geotechnics, Vol.19, No. 3: 221-224

    Article  Google Scholar 

  10. Oka F., Yashima A., Kohara L, Adachi T. (1994) Instability of a viscoplastic model for clay and numerical study of strain localisation. Chambon, Desrues and Vardoulakis (eds) 3rd Int. Workshop Localisation and Bifurcation Theory for Soils and Rocks, Grenoble: 237-247

    Google Scholar 

  11. Zienkiewicz O.C., Zhu J.Z. (1987) A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Num. Meth. Eng., Vol. 24: 337-357

    Article  MathSciNet  MATH  Google Scholar 

  12. Hicks M.A. (1997) An adaptive mesh study of localisation in a saturated soil.Yuan (ed.) Proc. 9 th Int. Conf. Computer Methods and Advances in Geomechanics, Wuhan: 1853-1858

    Google Scholar 

  13. Cividini A., Gioda G. (1992) A finite element analysis of direct shear tests on stiff clay. Int. J. Num. Anal. Meth. Geomech., 16: 869-886

    Article  Google Scholar 

  14. Sterpi D., Sakurai S. (1997) Numerical analysis of laboratory tests on a model tunnel. Asaoka, Adachi and Oka (eds.) Proc. Deformation and Progressive Failure in Geomechanics, IS-Nagoya ’97: 211-216

    Google Scholar 

  15. Sterpi D. (1999) An analysis of geotechnical problems involving strain softening effects. Int. J. Num. Analyt. Meth. Geomech., Vol. 23: 1427-1454

    Article  MATH  Google Scholar 

  16. Sterpi D., Cividini A. (1997) Numerical analysis of tunnels in strain softening soil. Yuan (ed.) Proc. 9th Int. Conf. Computer Methods and Advances in Geomechanic, Wuhan: 1389-1394

    Google Scholar 

  17. Bazant Z.P., Oh B.H. (1985) Microplane model for progressive fracture of concrete and rock. Journal of Engineering Mechanics, Vol. 111, No. 4: 559-582

    Article  Google Scholar 

  18. Beer G. (2001) BEFE user’s and reference manual. CSS, Graz, Austria.

    Google Scholar 

  19. Zienkiewicz O.C., Pande G.N. (1977) Time dependent multi-laminate model of rocks - a numerical study of deformation and failure of rock masses. Int. J. Num. Anal. Meth. Geomech., 1: 219-247

    Article  Google Scholar 

  20. Pande G.N., Sharma K.G. (1983) Multi-laminate model of clays - a numerical evaluation of the influence of rotation of the principal stress axes. Int. J. Num. Anal. Meth. Geomech., 7: 397-418

    Article  MATH  Google Scholar 

  21. Krajewski W. (1986) Mathematisch-numerische und experimentelle Untersuchungen zur Bestimmung der Tragfähigkeit von in Sand gegründeten, vertikal belasteten Pfählen. Veröffentlichungen des Instituts für Grundbau, Bodenmechanik,Felsmechanik und Verkehrswasserbau der RWTH Aachen, Heft 13.

    Google Scholar 

  22. Sadrnejad S.A., Pande G.N. (1989) A multilaminate model for sands. S.Pietruszczak and G.N. Pande (ed.) Proc. 3 rd Int. Symp. on Numerical Models in Geomechanics: 17-27, Elsevier

    Google Scholar 

  23. Pietruszczak S., Pande G.N. (1987) Multilaminate framework of soil models-plasticity formulation. Num. Analyt. Meth. Geomech., 11: 651-658

    Article  MATH  Google Scholar 

  24. Karstunen M. (1999) Numerical modelling of strain localization in dense sands.Acta Polytechnica Scandinavica No. 113, Espoo: The Finnish Academy of Technology

    Google Scholar 

  25. Bazant Z.P., Prat P.C. (1988) Microplane model for brittle-plastic material: I.theory. Journal of Engineering Mechanics, Vol.114, No.10: 1672-1688

    Article  Google Scholar 

  26. Pande G.N., Yamada M. (1994) The multilaminate framework of models for rock and soil masses. Proc. 1st Int. Workshop on Applications of Computational Mechanics in Geotechnical Engineering, Rio de Janeiro: 105-123, Balkema

    Google Scholar 

  27. Vermeer P.A. (1978) A double hardening model for sands. Géotechnique, 28: 413-433

    Article  Google Scholar 

  28. de Borst R. (1986) Non-linear analysis of frictional materials. Delft University of Technology, Netherlands. Dissertation

    Google Scholar 

  29. Rowe P.W. (1972) Theoretical meaning and observed values of deformation parameters for soil. R.H.G. Parry (ed.) Stress strain behaviour of soils, Proc. Roscoe Mem. symp.: 143-194. Henley-on-Thames: Foulis

    Google Scholar 

  30. Spener U. (2000) Parameterstudien zur Anwendung des Multilaminate Models. Institute for Soil Mechanics and Foundation Engineering, Graz University of Technology. Diploma thesis

    Google Scholar 

  31. Arthur R.F., Chua K.S., Dunstan T., Rodriguez del C. J.I. (1980) Principal stress rotation: a missing parameter. J. Geotech. Engineering Div. Proc. ASCE, 106, No.GT 4: 419-433

    Google Scholar 

  32. Ishihara K., Towhata I. (1983) Sand response to cyclic rotation of principal stress directions as induced by wave loads. Soils and Foundations, 23, No.4: 11-26

    Article  Google Scholar 

  33. Joer H.A., Lanier J., Fahey M. (1998) Deformation of granular materials due to rotation of principal axes. Géotechnique, 48: 605-619

    Article  Google Scholar 

  34. Schweiger H.F., Schuller H. (2000) New developments and practical applications of the Multilaminate Model for soils. Smith and Carter (eds.) Proc. Developments in Theoretical Geomechanics, The John Booker Memorial Symposium Sydney: 329-350. Balkema

    Google Scholar 

  35. Wiltafsky C, Messerklinger S., Schweiger H.F. (2002) An advanced multilaminate model for clay. In: Pande and Pietruszczak (eds.) Proc. 8th Intern. Symp. Numerical Models in Geomechanics, Rom, Balkema: 67-73

    Chapter  Google Scholar 

  36. Akagi H., Saitoh J. (1994) Dilatancy characteristics of clayey soil under principal axes rotation. Shibuya, Mitachi and Miura (Eds.), Proc. Int. Symp. Pre-failure Deformation Characteristics of Geomaterials, Vol. 1: 311-314, Sapporo, Balkema

    Google Scholar 

  37. Neher H.P., Cudny M., Wiltafsky C, Schweiger H.F (2002) Modelling principal stress rotation effects with multilaminate type constitutive models for clay. Pande and Pietruszczak (eds.) Proc. 8th Intern. Symp. Numerical Models in Geomechanics, Rom: 41-47, Balkema

    Google Scholar 

  38. Desrues J., Hammad W. (1989) Shear banding dependency on mean stress level in sand. Dembicki, Gudehus and Sikora (ed.) Proc. 2nd Int. Workshop on Numerical Methods for Localization and Bifurcation of Granular Bodies, Gdansk - Karlsruhe: 57-67

    Google Scholar 

  39. Vavrovsky G.-M. (1994) Gebirgsdruckentwicklung, Hohlraumverformung und Ausbaudimensionierung. Felsbau, 12, No. 5: 312-329

    Google Scholar 

  40. Vavrovsky G.-M., Schubert P. (1995) Advanced analysis of monitored displacements opens a new field to continuously understand and control the geotechnical behaviour of tunnels. Proc. 8 th Congr. Rock Mechanics, Tokyo: 1415-1419

    Google Scholar 

  41. Schuller H., Schweiger H.F. (2002) Application of a Multilaminate Model to simulation of shear band formation in NATM tunnelling. Computers and Geotechnics. Accepted for publication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Schweiger, H.F., Schuller, H. (2003). A multilaminate model for finite element analysis of tunnel excavation. In: Beer, G. (eds) Numerical Simulation in Tunnelling. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6099-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6099-2_13

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7221-6

  • Online ISBN: 978-3-7091-6099-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics